keyboard_arrow_up
A Daily Covid-19 Cases Prediction System using Data Mining and Machine Learning Algorithm

Authors

Yiqi Jack Gao1 and Yu Sun2, 1USA, 2California State Polytechnic University, USA

Abstract

The start of 2020 marked the beginning of the deadly COVID-19 pandemic caused by the novel SARS-COV-2 from Wuhan, China. As of the time of writing, the virus had infected over 150 million people worldwide and resulted in more than 3.5 million global deaths. Accurate future predictions made through machine learning algorithms can be very useful as a guide for hospitals and policy makers to make adequate preparations and enact effective policies to combat the pandemic. This paper carries out a two pronged approach to analyzing COVID-19. First, the model utilizes the feature significance of random forest regressor to select eight of the most significant predictors (date, new tests, weekly hospital admissions, population density, total tests, total deaths, location, and total cases) for predicting daily increases of Covid-19 cases, highlighting potential target areas in order to achieve efficient pandemic responses. Then it utilizes machine learning algorithms such as linear regression, polynomial regression, and random forest regression to make accurate predictions of daily COVID-19 cases using a combination of this diverse range of predictors and proved to be competent at generating predictions with reasonable accuracy.

Keywords

Covid-19 Case Prediction, Data Mining, Machine Learning Algorithm.

Full Text  Volume 11, Number 23