Authors
Kevin Qu and Yu Sun, California State Polytechnic University, USA
Abstract
A number of social issues have been grown due to the increasing amount of “fake news”. With the inevitable exposure to this misinformation, it has become a real challenge for the public to process the correct truth and knowledge with accuracy. In this paper, we have applied machine learning to investigate the correlations between the information and the way people treat it. With enough data, we are able to safely and accurately predict which groups are most vulnerable to misinformation. In addition, we realized that the structure of the survey itself could help with future studies, and the method by which the news articles are presented, and the news articles itself also contributes to the result.
Keywords
Machine Learning, Cross Validation, Training and Prediction, Misinformation.