Authors
Gullanar M. Hadi1 and Nassir H. Salman2, 1Salahaddin University, Iraq and 2Cihan University, Iraq
Abstract
In the first study [1], a combination of K-means, watershed segmentation method, and Difference In Strength (DIS) map were used to perform image segmentation and edge detection tasks. We obtained an initial segmentation based on K-means clustering technique. Starting from this, we used two techniques; the first is watershed technique with new merging procedures based on mean intensity value to segment the image regions and to detect their boundaries. The second is edge strength technique to obtain accurate edge maps of our images without using watershed method. In this technique: We solved the problem of undesirable over segmentation results produced by the watershed algorithm, when used directly with raw data images. Also, the edge maps we obtained have no broken lines on entire image. In the 2nd study level set methods are used for the implementation of curve/interface evolution under various forces. In the third study the main idea is to detect regions (objects) boundaries, to isolate and extract individual components from a medical image. This is done using an active contours to detect regions in a given image, based on techniques of curve evolution, Mumford–Shah functional for segmentation and level sets. Once we classified our images into different intensity regions based on Markov Random Field. Then we detect regions whose boundaries are not necessarily defined by gradient by minimize an energy of Mumford–Shah functional for segmentation, where in the level set formulation, the problem becomes a mean-curvature which will stop on the desired boundary. The stopping term does not depend on the gradient of the image as in the classical active contour. The initial curve of level set can be anywhere in the image, and interior contours are automatically detected. The final image segmentation is one closed boundary per actual region in the image.
Keywords
Watershed, difference in strength map, K-means, edge detection, image segmentation. Active counters, Level set method, Markov Random Field