Authors
Santosh Kumar Das1, Abhishek Kumar2, Bappaditya Das1 and A.P.Burnwal3, 1B. C. Roy Engineering College, India, 2Vinoba Bhave University, India and 3Guru Gobind Singh Educational Society's Technical Campus,India
Abstract
Soft Computing refers to the science of reasoning, thinking and deduction that recognizes and uses the real world phenomena of grouping, memberships, and classification of various quantities under study. As such, it is an extension of natural heuristics and capable of dealing with complex systems because it does not require strict mathematical definitions and distinctions for the system components. It differs from hard computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. The guiding principle of soft computing is: Exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. The main techniques in soft computing are evolutionary computing, artificial neural networks, and fuzzy logic and Bayesian statistics. Each technique can be used separately, but a powerful advantage of soft computing is the complementary nature of the techniques. Used together they can produce solutions to problems that are too complex or inherently noisy to tackle with conventional mathematical methods. The applications of soft computing have proved two main advantages. First, it made solving nonlinear problems, in which mathematical models are not available, possible. Second, it introduced the human knowledge such as cognition, recognition, understanding, learning, and others into the fields of computing. This resulted in the possibility of constructing intelligent systems such as autonomous self-tuning systems, and automated designed systems. This paper highlights various areas of soft computing techniques.
Keywords
Soft Computing, Fuzzy Logic, Neuro Computing