Authors
Nabil Giweli, Seyed Shahrestani and Hon Cheung, Western Sydney University, Australia
Abstract
The rapidly growing number of wireless communication devices has led to massive increases in radio traffic density, resulting in a noticeable shortage of available spectrum. To address this shortage, the Cognitive Radio (CR) technology offers promising solutions that aim to improve the spectrum utilization. The operation of CR relies on detecting the so-called spectrum holes, the frequency bands that remain unoccupied by their licensed operators. The unlicensed users are then allowed to communicate using these spectrum holes. As such, the performance of CR is highly dependent on the employed spectrum sensing methods. Several sensing methods are already available. However, no individual method can accommodate all potential CR operation scenarios. Hence, it is fair to ascertain that the performance of a CR device can be improved if it is capable of supporting several sensing methods. It should obviously also be able to select the most suitable method. In this paper, several spectrum sensing methods are compared and analyzed, aiming to identify their advantages and shortcomings in different CR operating conditions. Furthermore, it identifies the features that need to be considered while selecting a suitable sensing method from the catalog of available methods.
Keywords
Cognitive Radio; Spectrum Sensing; Qos