Authors
Babita Saxena and Charu Wahi, Birla Institute of Technology, India
Abstract
This paper presents a baseline digits speech recognizer for Hindi language. The recording environment is different for all speakers, since the data is collected in their respective homes. The different environment refers to vehicle horn noises in some road facing rooms, internal background noises in some rooms like opening doors, silence in some rooms etc. All these recordings are used for training acoustic model. The Acoustic Model is trained on 8 speakers’ audio data. The vocabulary size of the recognizer is 10 words. HTK toolkit is used for building acoustic model and evaluating the recognition rate of the recognizer. The efficiency of the recognizer developed on recorded data, is shown at the end of the paper and possible directions for future research work are suggested.
Keywords
HMM, Acoustic Model, Digit Speech Recognition, Grammar