Authors
Hao Wu and Yi Wan, Lanzhou University, China
Abstract
In computer vision, the estimation of the fundamental matrix is a basic problem that has been extensively studied. The accuracy of the estimation imposes a significant influence on subsequent tasks such as the camera trajectory determination and 3D reconstruction. In this paper we propose a new method for fundamental matrix estimation that makes use of clustering a group of 4D vectors. The key insight is the observation that among the 4D vectors constructed from matching pairs of points obtained from the SIFT algorithm, well-defined cluster points tend to be reliable inliers suitable for fundamental matrix estimation. Based on this, we utilizes a recently proposed efficient clustering method through density peaks seeking and propose a new clustering assisted method. Experimental results show that the proposed algorithm is faster and more accurate than currently commonly used methods.
Keywords
Fundamental Matrix, Clustering, Density Peaks