Authors
Adil AbdUlhur AboShana, University of eötvöá loránd, Hungary
Abstract
A novel based a trajectory-guided, concatenating approach for synthesizing high-quality image real sample renders video is proposed . The lips reading automated is seeking for modeled the closest real image sample sequence preserve in the library under the data video to the HMM predicted trajectory. The object trajectory is modeled obtained by projecting the face patterns into an KDA feature space is estimated. The approach for speaker's face identification by using synthesise the identity surface of a subject face from a small sample of patterns which sparsely each the view sphere. An KDA algorithm use to the Lip-reading image is discrimination, after that work consisted of in the low dimensional for the fundamental lip features vector is reduced by using the 2D-DCT.The mouth of the set area dimensionality is ordered by a normally reduction base on the PCA to obtain the Eigen lips approach, their proposed approach by[33]. The subjective performance results of the cost function under the automatic lips reading modeled , which wasn’t illustrate the superior performance of the method.
Keywords
Lip Segmentation, Discrete cosine transform algorithm, kernel Discriminant Analysis , Discrete Hartley Transform, hidden Markov Model.