keyboard_arrow_up
Evidence for the correlation between Conflict Risk Indicators GCRI and FSI using Deep Learning

Authors

Vera Kamp1, JP Knust1, Reinhard Moratz2,1, Kevin Stehn1 and Sören Stöhrmann1, 1data42 GmbH, Germany and 2University of Münster, Germany

Abstract

Data mining enables an innovative, largely automatic meta-analysis of the relationship between political and economic geography analyses of crisis regions. As an example, the two approaches Global Conflict Risk Index (GCRI) and Fragile States Index (FSI) can be related to each other. The GCRI is a quantitative conflict risk assessment based on open source data and a statistical regression method developed by the Joint Research Centre of the European Commission. The FSI is based on a conflict assessment framework developed by The Fund for Peace in Washington, DC. In contrast to the quantitative GCRI, the FSI is essentially focused on qualitative data. Both approaches therefore have closely related objectives, but very different methodologies and data sources. It is therefore hoped that the two complementary approaches can be combined to form an even more meaningful meta-analysis, or that contradictions can be discovered, or that a validation of the approaches can be obtained if there are similarities. We propose an approach to automatic meta-analysis that makes use of machine learning (data mining). Such a procedure represents a novel approach in the meta-analysis of conflict risk analysis.

Keywords

Data Science, Deep Learning, Conflict Risk Prediction

Full Text  Volume 9, Number 6