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ABSTRACT 
 

This paper proposes phoneme clustering methods for multilingual language identification (LID) 

on a mixed-language corpus. A one-pass multilingual automated speech recognition (ASR) 

system converts spoken utterances into occurrences of phone sequences. Hidden Markov models 

were employed to train multilingual acoustic models that handle multiple languages within an 

utterance. Two phoneme clustering methods were explored to derive the most appropriate 

phoneme similarities between the target languages. Ultimately a supervised machine learning 

technique was employed to learn the language transition of the phonotactic information and 

engage the support vector machine (SVM) models to classify phoneme occurrences. The system 

performance was evaluated on mixed-language speech corpus for two South African languages 
(Sepedi and English) using the phone error rate (PER) and LID classification accuracy 

separately. We show that multilingual ASR which fed directly to the LID system has a direct 

impact on LID accuracy. Our proposed system has achieved an acceptable phone recognition 

and classification accuracy in mixed-language speech and monolingual speech (i.e. either 

Sepedi or English). Data-driven, and knowledge-driven phoneme clustering methods improve 

ASR and LID for code-switched speech. The data-driven method obtained the PER of 5.1% and 

LID classification accuracy of 94.5% when the acoustic models are trained with 64 Gaussian 

mixtures per state. 
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1. INTRODUCTION 
 

Most multilingual societies are capable of code-switching in their daily conversations. This 
appears to be an acceptable modern-day style of communication, usually preferred in multilingual 

societies [1], [2]. Code-switching speech is commonly more spoken than formally written, and a 

large textual dataset is required to build a suitable language model which is necessary for 

developing a multilingual ASR system [3], [4]. However, the African reality in many 
communication episodes is that English is frequently mixed with indigenous under-resourced 

official languages. 

 
Code-switching speech has a significant impact on existing ASR systems and a large speech 

corpus is required to develop suitable context-dependent acoustic models [3]. The existing 

monolingual ASR systems are not accurate enough to handle code-switched speech utterances. 
Consequently, acoustic, pronunciation and language models need to be redesigned to 

accommodate foreign or unknown words from different languages [5]. A multilingual ASR 
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system employs multilingual language models that allow the exploitation of multilingual 
pronunciation dictionaries. It is highly plausible to classify code-switched speech itself in the 

same category as under-resourced languages due to lack of speech technology resources for 

developing accurate ASR systems [2], [3]. ASR systems deployed in this environment should be 

able to process multilingual speech that includes such code-switching utterances. The LID system 
identifies language speech processing applications, such as telephone calls routing to human 

operators, particularly for handling emergency calls [3], [5]. In this paper, we propose an ASR 

system that is integrated with an LID system to classify code-switched speech for Sepedi and 
English. Only the experiments conducted using two official South African languages are reported 

on. 

  
There are two ASR approaches that are reported to handle code-switched speech [1], [6], [7]. The 

first approach employs two monolingual ASR systems and an LID module. The LID module 

extracts the input code-switched utterances and then decides on the identity of each speech 

segment before passing them into their respective monolingual ASR systems. This approach is 
very simple because it applies acoustic and language modelling methods which achieve excellent 

monolingual performance. However, this approach is not preferred by many researchers due to 

LID error propagation which leads to poor ASR performance. The second approach employs a 
single-pass multilingual ASR system comprising a multilingual acoustic model of the languages 

concerned, a multilingual pronunciation dictionary which combines the words from targeted 

languages, and a multilingual language model that allows mixing of different language units. The 
approach needs a complete redesign of the acoustic and language models [6]. The major 

advantage of this approach is that it does not require the use of an LID system and it avoids the 

errors presented by the LID system. 

 
In this research we propose a multilingual ASR system to perform LID on mixed-language 

corpora.  We investigated whether the second approach can be adopted to achieve suitable 

multilingual acoustic modelling which can be used to handle Sepedi-English code-switching 
speech. We present the first study which relied solely on the mixed monolingual speech corpus of 

Sepedi and English but was evaluated using a code-switched speech corpus. Furthermore, we 

investigated which phoneme clustering method yields better ASR accuracy. We also examined 

how a multilingual acoustic model can impact LID classification accuracy in a mixed-language 
corpus. The novel approach proposed in this study is the first to offer a framework that integrates 

acoustic features and phonotactic information to achieve the LID system for mixed-language 

speech. This is a relevant study since it is common in South Africa for more than one language to 
be spoken in the same region. 

 

2. RELATED WORK 
 

In Singapore, Mandarin and English are often mixed in spoken conversations [1], in Hong Kong 
code-switching between Cantonese and English takes place on many occasions [8] and in 

Taiwan, Mandarin-Taiwanese code-switching speech has been reported [9]. Mixed-language 

speech has also been found to occur in India between Hindi and English [10]. Code-switching is 
also observed in South Africa, and two South African indigenous languages, Xhosa and Zulu, 

were studied for LID and multilingual speech recognition. Recently, Modipa et al. [11] reported a 

context-dependent modelling technique of English vowels in Sepedi code-switched speech where 
the process of obtaining phone mapping from embedded language to the matrix language was 

investigated.  

 

There are few reported approaches in code-switched speech. One approach is to integrate 
multiple cues such as acoustics, prosodics and phonetics to distinguish between languages in a 

code-switched speech utterance [8]. A language boundary detection (LBD) method is applied to 
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detect multiple languages within an utterance [9]. The second approach, such as the delta-
Bayesian information criterion (Delta-BIC) and latent semantics analysis (LSA), has been used to 

separate English, Mandarin and Taiwanese in code-switched utterances [9]. Lastly, an approach 

that uses maximum a posteriori-based estimation was used to jointly segment and identify 

utterances of a mixed language [13]. The above approaches use an LID module that incorporates 
an LBD module. The LID systems that incorporate an LBD module are usually not preferred due 

to incorrect assumptions that code-switched speech segments are independent of each other and 

as a result, errors in the LID module cannot be recovered [1]. Therefore, if the LBD module 
cannot achieve 100%, it will directly influence the performance of the LID module, thereby 

limiting the performance of the speech recognition module [1], [10].  

 
On the other hand, a multilingual ASR approach can handle code-switched speech. It comprises a 

multilingual acoustic model, a multilingual pronunciation dictionary and a multilingual language 

model that allows the mixing or sharing of models across different language units [1], [10]. A 

multilingual ASR approach does not need an additional LID module to identify speech segments 
since language information is incorporated directly into the system [1]. One technique is to use a 

linguistic knowledge-based method to establish a multilingual phone set mapping or clustering of 

similar phonetic features that share the training data [7]. Common examples are the International 
Phonetic Alphabet (IPA), Speech Assessment Methods Phonetic Alphabet (SAMPA) and 

Wordbet [15]. Another technique is to map language-dependent phones using a data-driven 

approach such as clustering specific phones according to distance measured between similar 
acoustic models. Examples of data-driven methods are the Confusion Matrix, Bhattacharyya 

Distances and Kullback-Leibler Divergent which takes spectral characteristics into consideration 

[15].  

 
Lyu et al. [16] propose a word-based lexical model LID system which uses the lexicon 

information to distinguish between code-switching speech within an utterance. A two-stage 

scheme system is used with a large vocabulary continuous speech recognition (LVCSR) system. 
Then a trained word-based lexical model is applied to identify languages via recognised word 

sequences. The approaches such as Parallel Phone Recognition and Language Modelling (P-

PRLM) [4, 18] and parallel phoneme recognition vector space modelling (PPR-VSM) [17] are 

some of the most popular approaches to the LID system. The P-PRLM approach employs 
multiple phoneme recognisers that tokenise the speech waveform into sequences of phonemes. 

The resulting sequence of phonemes is then passed to the n-gram language model which 

determines the most probable language from the target languages [6], [18]. The supervised 
support vector machine (SVM) model has proven to be the best classifier [18]. A similar 

approach was used to distinguish between 11 officially spoken languages of South Africa [18]. It 

was implemented using P-PRLM architecture and techniques such as phoneme frequency 
filtering - where an SVM-based classifier is used to classify languages at the back end. The SVM 

classifier was able to achieve an average LID rate of 71.78% on test samples of 3-10 seconds 

long and an LID rate of 82.39% when clustering similar language families [18]. The diagram 

below shows the P-PRLM system employed for LID in South African languages. The Figure 1 
below shows the PPRLM system employed for LID in South African languages. This work is 

similar to this current research work, but was employed for single-language identification. 
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Figure 1.  LID system based on P-PRLM scheme (adopted from[18]). 

 

3. MIXED-LANGUAGE CORPUS 
 

The speech corpus in this study contained two monolingual speech sets of data for Sepedi and 

English. The third speech corpus was Sepedi-English code-switched speech data which was 
recorded during the speech data collection phase. The speech corpora were divided into training 

and testing datasets. The amount of mixed-language speech data that was used for the training 

and testing of the system is summarised in the sections below. 

 

3.1. Training Dataset 
 
The corpus used for training the acoustic model included recorded speech data and the respective 

transcriptions of locally produced Sepedi developed within the Telkom Centre of Excellence for 

Speech Technology (TCoE4ST) and freely available LWAZI South African English speech data. 

The TCoE4ST locally produced Sepedi speech corpus had 3 465 utterances. From the LWAZI 
English speech corpus, 1 680 recorded speech data and the respective sentences from utterances 

were selected. The training dataset contained a total of 5 505 speech utterances and was 5.5 hours 

long.  
 

3.2. Testing Dataset 
 
The speech corpus used for testing the phone recognition contained 660 speech utterances which 

were not part of the training speech data. Code-switched speech is generally spoken but not 

formally written. However, it is not easy to find code-switched speech data. It is for this reason 
that simple finite loop grammar was used to generate 60 artificially code-switched sentences that 

were syntactically correct. These texts were recorded by 10 speakers to produce 660 utterances, 

300 of which were used as a testing set and the remaining 300 were included in the training set. 
The quality of the utterances was manually improved by removing dysfluencies such as long 

pauses, laughs and hiccups. The average ratio of code-switched English words within each 

utterance was not more than 0.5. The testing utterances were 1 hour long. 

 

4. PHONEME MAPPING METHODS 
 

In this research project, two different phone mapping strategies are proposed to determine the 

similarity between the target languages. The first mapping strategy is based on an IPA-based 
scheme which requires linguistic experts, and the other strategy is a data-driven method derived 

by measuring a confusion matrix. 
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4.1. Linguistic-Knowledge Phoneme Mapping 
 

The methods which are used to deal with similar phoneme inventories have been studied [1], [8], 
[9]. A single-pass speech recogniser on two languages with a multilingual acoustic modelling 

technique for the available speech corpus was proposed in this study. The multilingual acoustic 

model was developed by mapping the English phonemes to the Sepedi phonemes. This approach 
was motivated by the occurrence of similar phonemes from the target languages and also aimed 

to reduce a larger number of phonemes. The criteria that were used to construct the linguistic-

knowledge strategy are described below.  
 

 

The above criteria resulted in the phoneme mapping list indicated in Table 1 below.  Phonemes 
such as /au/ and /e@/from the LWAZI dictionary were decoupled to a single phoneme /a/, /u/and 

/e/, /@/ respectively. 

 
Table 1. Examples of the phoneme list achieved with linguistically motivated method. 

 

Phoneme mapping list 
from to  from to  from to from to 

{ E Oi O i i: i g k_> 

3: E p p_h i@ i @ @i @ i 

a: a Q O k k_h u: u 

au a i r\ r O: O u@ u 

ai a u t t_h @: a Z d_0Z 

d l’ T f U u h_b  h 

D l’ tS tS_h v B Additions 

e@ E @ @u O z s @ b 

 

In our case, the diphthongs of the English language were separated into vowels using the 
traditional IPA-based strategy in the mixed phoneme set. Each phonemic vowel was mapped toits 

equivalent Sepedi phoneme directly using C-2 criteria. 

 

4.2.  Data-driven Phoneme Mapping 
 

The data-driven mapping which is based on the confusion matrix was built by including all the 
Sepedi and English phonemes [10, 11]. The confusion matrix was generated when the acoustic 

models of the source language were applied to the speech utterances of the target language. The 

recognised phoneme sequences of the source phoneme candidates were then mapped to phoneme 

sequences of the target phoneme candidates as indicated for Table 2. This mapping method 
consists of the counts of the confusion pairs when aligning the speech recognition output and 

transcriptions of the speech data. The advantage of this approach is that it is fully data-driven and 

does not require a linguistic expert, which can be time-consuming. For each phoneme of the 

Phoneme Mapping Criteria 

C-1. If the IPA classification is like a Sepedi phoneme, then the English phoneme is mapped 

directly to the Sepedi phoneme.  

C-2. Each English phoneme is mapped to its closest matching Sepedi phoneme.  

C-3. If no closely matching phoneme is found, then the English phoneme that occurs most 

frequently in the phoneme inventory is extended to the phoneme set.  
C-4. If none of the above criteria are applicable, then each phoneme is mapped to the Sepedi 

phoneme that it is mostly confused with, according to a confusion matrix. 



290   Computer Science & Information Technology (CS & IT) 

English language, the most often confused phoneme with the Sepedi language was selected for 
mapping. For each phoneme PL1 from the target language PL2, the best respective source 

candidate phoneme was matched. The similarities were measured by selecting the number of 

phoneme confusions as C (PL1, PL2). The target phoneme was matched as follows: 

 
𝑃𝐿𝑛 = 𝑀𝑎𝑥𝐶(𝑃𝐿1, 𝑃𝐿2)                                                             (1) 

 

where L1 denotes the target language (Sepedi) and L2 the source language (English). Thus, for 
each target phoneme, a source candidate phoneme with the highest number of confusions was 

determined. If the same number of confusions occurred on two or more source candidate 

phonemes, the decision on the choice of the target phoneme was made by a knowledge expert. 
The same strategy was followed even when there were no confusions found between target and 

source candidate phonemes. 

 
Table 2. Examples of the phoneme list achieved with data-driven method. 

 

       Phoneme mapping list 
From to  from to  

{ a Oi E 

3: E p p_> 

a: a Q O 

au i r\ r 

ai u t t_h 

d l’ T F 

D l’ tS tS_h 

e@ E @u O 

G G u: U 

@i E u@ O 

i: E U U 

i@ a v B 

k k_> z S 

O: O Z d_0Z 

@ a b B 

h_b h @: a 

 

5. PROPOSED MULTILINGUAL ASR-LID SYSTEM  
 

The multilingual ASR-LID system is targeted to identify only two languages. A multilingual 
recognition system takes speech waveform and outputs the corresponding phone sequences. This 

is done when an ASR system estimates the likelihood score of the optimal phone sequences given 

the acoustic features extracted from the speech utterance waveform. To achieve this, a 
multilingual acoustic and language model was employed to estimate the likelihood scores for the 

spoken utterance. The phoneme mapping technique was applied to generate the shared phoneme 

set for robust multilingual acoustic modelling. Figure 2 shows the proposed multilingual ASR 

system. 
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Figure 2.  Multilingual automatic speech recognition system. 

 
Multilingual acoustic models are used to perform HMM-based parameter re-estimation. For 

recognition purposes, the multilingual acoustic features were compared with the HMM-based 

multilingual acoustic models as well as the language model. The sequences of phone strings were 

decoded by the Viterbi decoding algorithm, which searches the optimal sequence of the phones 
using the combined likelihood scores from the multilingual acoustic model and language model. 

 

 
 

Figure 3.  The language identification system for mixed-language speech. 

 
For each phone sequence generated from the ASR system, the bi-phone occurrences were 

extracted from the phone sequences and converted into a suitable SVM format with a unique 

numerical representation. This approach is like vector space modelling [5].  As a final step (see 

Figure 3), the SVM-based classifier was used to identify only two class feature samples; 
languages outside the targeted range were not classified. For each phoneme sequence generated 

from the ASR system, the phoneme occurrences were extracted from the phoneme sequences and 

converted into a suitable SVM format with a unique numerical representation. The classification 
model with the highest log-likelihood score was chosen to be the most likely sample for 

classification. The bi-phone vectors were then used as an input to the SVM-based classifier to 

build the classification model. The phoneme feature vectors have the following numerical 
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attributes: a label is the class label in a numerical representation, a feature index represents 
ordered feature indexes - that is, the location of that particular phoneme feature, usually integer 

representation, and in our case, a feature value represents the frequency count or occurrences of 

each phoneme feature attribute. The SVM classification model was used to separate vectors in a 

binary classification and hypothesise the maximum likelihood score of the bi-phone frequencies 
of each language [18]. 

 

6. MODEL DEVELOPMENT AND SYSTEM SETUP  
 
This section describes the experimental setup, the tools used to develop the ASR systems, LID 

system and the configurations of each system setup. All the multilingual ASR systems were 

developed, and experiments were performed using the hidden Markov Model Toolkit (HTK) 

[12]. The experimental results obtained from these ASR and LID systems are later analysed and 
discussed.  

 

6.1. Baseline Acoustic Models  
 

To build multilingual acoustic models, we applied a Hamming window of 25ms length with an 

overlapping window frame length of 10ms. Acoustic features were obtained using 39-
dimensional static Mel-frequency Cepstral Coefficients (MFCCs) with 13 deltas and 13 

acceleration coefficients. The Cepstral Mean and Variance Normalization (CMVN) pre-

processing and semi-tied transformations were applied to the hidden Markov Models (HMM). 
The CMVN was used to overcome the undesired variations across the channels and distortion. 

Figure 4 shows the configuration file that was used for extracting speech features. The HMM-

based ASR system was created with a widely used standard HTK [12]. The acoustic model used a 
three-state left-to-right HMM. The HMM-based system consisted of the tied-state triphones 

clustered by a decision tree technique. Each HMM state distribution was modelled by eight 

Gaussian mixture models (GMM) with a diagonal covariance matrix. Furthermore, the optimal 

phone insertion penalties and language scaling factors were properly tuned to balance the number 
of inserted and deleted phones during speech decoding. 

 
CEPLIFTER       =    22 

ENORMALISE   =    FALSE 

NUMCEPS         =    12 

NUMCHANS      =    26 

PREEMCOEF    =    0.97 

SAVECOMPRESSED =   TRUE 

SAVEWITHCRC     =    FALSE 

SOURCEFORMAT    =    WAVE 

TARGETKIND      =    MFCC_0_D_A_Z 

TARGETRATE      =    100000.0 

USEHAMMING      =    TRUE 

WINDOWSIZE      =    250000.0 

ZMEANSOURCE     =    TRUE 

LOFREQ          =       150 

HIFREQ          =       4000 

 

Figure 4. The configurations used for mfcc feature extraction 

 

6.2. Language Modelling  
 

To build the multilingual language model, many data texts had to be collected and normalised. 
The word coverage of the multilingual speech was improved by applying language-aware 

context-based text normalisation. Thus, for example, digits, temperature, time, currency amount, 

percentage, etc., were converted to appropriate words. A phone language model was incorporated 
in the speech recogniser for the purpose of robust speech decoding. The training transcriptions, 
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together with the generated code-switched texts, were formatted into phone transcriptions and 
were used to develop the multilingual language model. The combined vocabulary that was used 

to train the language model consisted of over 85 000 unique word tokens for both Sepedi and 

English. The language model that was used for multilingual ASR experiments was implemented 

using the Stanford Research Institute language model toolkit [13]. It was trained independently 
with discount interpolation. The interpolation weights were optimised using the training set 

perplexity as a performance measure. 

  

6.3. Multilingual Dictionary and Phoneme Set  
 

The experimental bilingual pronunciation dictionary used was achieved by merging several 
monolingual pronunciation word lexicons without retaining duplicate words. For the primary 

Sepedi language, we used a limited vocabulary of a freely available Sepedi pronunciation 

dictionary that was locally produced within the TCoE4ST and LWAZI. For the English language, 
we used a freely available LWAZI English pronunciation dictionary often used for speech 

technology research tasks. All the words in the pronunciation dictionary were manually verified 

and checked for redundant phone representation. There were 7 176 Sepedi and 78 722 English 
words in the bilingual dictionaries. The dictionaries were further redesigned and rectified where 

necessary. 

  

The combined bilingual dictionary contained 85 898 unique words. The representation used in 
the bilingual pronunciation dictionary followed the SAMPA notations based on IPA rules and 

also taking into consideration the pronunciation rules [8], [14]. Some 67 phones were combined 

into a mixed phone set, attained by combining Sepedi and English phones directly without silent 
phonemes. In this case, phones with similar phonetic features were mapped into one best phone 

candidate representation to lower confusion within the combined phone set. Some of the English 

vowel phones were left unmapped since they did not match any Sepedi vowel phones. 
  

The combined mixed phone set included all phonemes of Sepedi and English that were used 

during the training phase without performing phoneme mapping. We used a knowledge-based 

IPA method to construct linguistically motivated phonetic pairwise mappings. The IPA-based 
phoneme set, and data-driven phoneme set contained 38 phonemes, excluding the silent 

phonemes. In this case, to train our multilingual acoustic model that effectively handled Sepedi-

English code-switched speech, we adopted the technique used by Biswas et al. [6], Shan et al. [7] 
and Bhuvanagiri and Kopparapu [8]. Lastly, problematic words of Sepedi or English origin were 

manually reviewed for correct pronunciation prior to training the HMMs. 

  

6.4. Language Identification Classifier  
 

The SVM-based classifier based on bi-phone frequencies as an output was used to classify only 
two class feature samples; languages outside the targeted range were not classified. For each 

phone sequence generated from the phone recognition, each bi-phone occurrence was extracted 

from the phone sequences and converted into a suitable SVM format with a unique numerical 

representation called a bi-phone feature vector. Therefore, the phoneme features were calculated 
for every utterance. The bi-phone frequency vectors were then used as input to the back-end 

SVM classifier. The SVM classification model was used to separate vectors in a binary 

classification and hypothesise the maximum likelihood score of the bi-phone frequencies of each 
language. The bigram phones were trained to create the classification model. 

  

The SVM-based classifier was implemented using LIBSVM library [15]. The SVM training 
dataset size was 12 147 KB of phone tokens. The training dataset that was used for training the 

SVM-based classifier was extracted from the phone-based transcriptions. The phone sequences 
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were used to train the SVM classifier, which resulted in support vectors from models. The 
training process was also aimed at maximising the margin as well as minimising the training 

errors. The bi-phone vector attributes for both testing and training were scaled in the range of [0, 

1]. The benefit of scaling datasets is to speed up the training and classification process in order to 

obtain the best model performance and to avoid numerical differences that could lead to over-
fitting if the training data attributes are in a large range [16]. A grid search was used to estimate 

the SVM parameters such as C, gamma, margin error, trade-off parameter and kernel width 

before training the classifier [5], [17]. The Radial Basis Function (RBF) kernel was used for 
training the classifier. We obtained the optimal parameter for this kernel and applied five-fold 

cross-validation to the training set and estimated each grid point for the accuracy of the classifier. 

 

7. RESULTS AND DISCUSSION  
 
For experimentation, three ASR and LID systems were developed. The baseline ASR system was 

achieved by directly combining monolingual ASR systems for Sepedi and English into a 

multilingual ASR system. The baseline (i.e. directly mixed) ASR-LID system was evaluated and 
compared with the multilingual ASR-LID systems that were developed using the two phoneme 

mapping techniques. No specific phoneme mapping was performed in the phoneme set. The 

phoneme set size was large with 67 phonemes. The HMM-based acoustic models trained on these 
systems contained eight Gaussian mixtures per state.  

 

In this experiment, we modified a mixed recognition system by applying two different phoneme 

mapping techniques. We trained the front-end acoustic models on both Sepedi and English 
speech data and performed modelling of code-switching at the pronunciation dictionary level. 

Linguistically motivated and data-driven phoneme mapping methods were applied to determine 

the similarity between the phonemes of our target languages. We first applied a linguistically 
motivated phoneme mapping method using an IPA-based scheme. Our experiments were 

performed on the same speech data which was used for developing the directly mixed LID 

system. As a result of phoneme mapping, the number of phonemes in the directly combined 
phoneme set were reduced. The results obtained from the three systems using mixed-language 

speech are shown in Table 3. 

 

The experimental results presented in Table 3 show that phone error rate (PER) and LID 
classification accuracy improved when the phoneme clustering methods were applied. The 

quality of the correct phoneme recognition output was typically captured by the PER metric 

formulated as: 

𝑃𝐸𝑅 =
(𝑆+𝐼+𝐷)

𝑁
                                                         (2) 

 
where (N) is the total number of labels, (D) is the number of phone deletion errors, (S) is the 

number of phone substitution errors and (I) is the number of phone insertion errors. 

  

In Table 3, the SVM classifier yielded a promising and acceptable LID accuracy rate of 95.2% on 
directly mixed speech utterances with a total of 3 201 support vectors. In this case, mixed speech 

utterances included both monolingual and code-switched utterances. The experimental results of 

the SVM-based LID classifier were also obtained using RBF kernel. The SVM-based classifier 
was trained using a five-fold cross-validation and RBF kernel which yielded an estimation rate of 

99.75% on the trained classification models. Both phoneme mapping approaches achieved a 

significant improvement over the baseline system results. The data-driven approach outperformed 
the baseline directly mixed system and the IPA-based system. The IPA-based approach 

performed better with a PER of 4.5% but LID classification accuracy was about 9% lower. The 

data-driven approach performed better with a PER of 14.5% as well as a LID classification 
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accuracy of 2.3%. These methods allow sharing of the parameters in the HMM-based acoustic 
models of the target languages.  

 

The IPA-based LID system was able to achieve a better PER reduction of 4.5%, outperforming 

the directly combined mixed LID system. The best performance of the PER reduction of 19.2% 
was achieved by the data-driven LID system. The data-driven LID system achieved a PER 

difference of 9.4% compared to the IPA-based LID system. We also observed that the ASR 

system with a larger number of phonemes in the phoneme set performed badly compared to when 
a phoneme mapping method was engaged to reduce the phoneme set. The amount of quality 

training speech data can also improve the multilingual ASR system performance significantly. 

 
Table 3.  Experimental results showing the PER of the multilingual ASR and LID classification accuracy 

with 8, 16, 32 and 64 Gaussian mixtures per state. 
 

Number of 

Gaussian Mixtures 

ASR-LID 

Systems 

PER(%) LID 

Accuracy 

(%) 

 

8 

Directly mixed 33.2 95.2 

IPA-based 28.7 85.8 

Data-driven 19.2 87.3 

 

 

16 

Directly mixed 21.4 83.8 

IPA-based 17.8 89.7 

Data-driven 15.6 89.5 

 

 

32 

Directly mixed 12.9 83.8 

IPA-based 12.9 84.7 

Data-driven 7.3 96.7 

 

 

64 

Directly mixed 5.4 83.9 

IPA-based 7.3 83.7 

Data-driven 5.1 94.5 

 

Table 3 shows the PER and LID accuracy or rate that was attained on the four LID systems when 
the HMM-based acoustic models contained 16 Gaussian mixtures per state. The use of context-

dependent HMM-based acoustic models with increased Gaussian mixtures per state was adopted 

during training of the acoustic models as they tend to improve the performance of the phoneme 

recognition systems. The PER has a direct proportionate relationship to Gaussian mixtures per 
state. The triphone models were then improved by gradually increasing the number of Gaussian 

mixtures and performing four iterations of embedded re-estimation after each increase. This 

procedure was continuously repeated until the acoustic models had 32 Gaussian mixtures per 
state, after which the phoneme recognition results no longer improved significantly on the test 

set. The performance of the PER and LID classification accuracy was significantly better on both 

IPA-based and data-driven LID systems. Both systems were able to outperform the directly 
mixed LID system only in the LID classification accuracy. A slight difference of 0.12% in LID 

classification accuracy was observed between the IPA-based and data-driven LID systems. This 

was due to a larger number of the phoneme occurrences that were observed within the testing set. 

 
Table 3 shows the PER and the LID classification accuracy attained on the four LID systems 

when the HMM-based acoustic models contained 32 Gaussian mixtures per state. The PER 

reduction was better, but the LID accuracy was a bit lower than expected for the data-driven LID 
system. We observed that a better performance of the PER does not necessarily result in a 

positive bias of the LID accuracy on both directly mixed and IPA-based LID systems, since the 
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phoneme recognition systems are used only to obtain phoneme strings for SVM-based classifier 
training. 

 

A slight reduction of the PER was achieved with eight Gaussian mixtures, but a better PER 

reduction was achieved with 32 Gaussian mixtures. This clearly shows that a data-driven LID 
system achieves a better PER with all Gaussian mixtures per HMM state represented in Table 3. 

The directly mixed LID and IPA-based LID system nearly achieved the same PER with 

32Gaussian mixtures per HMM-based acoustic model state. However, a slight improvement of 
0.3% was achieved. The phoneme recognition results in the experiment show that the application 

of phoneme mapping methods to our targeted languages and the increase of Gaussian mixture per 

shared HMM-based acoustic model significantly improve the performance of the phoneme 
recognition and LID system. 

  

We also observed that by applying IPA-based and data-driven phoneme mapping techniques, 

these could yield extreme results such as increased sentence and phone correctness, phone 
recognition and LID accuracy of the proposed mixed-language integrated LID system, as well as 

reduced PER when 32 Gaussian mixtures per HMM state are considered. However, both the 

directly mixed ASR-LID system and data-driven system show a significant reduction of PER 
with 64 Gaussian mixtures but no further increase in the LID classification accuracy as indicated 

in Table 3. 

 

8. CONCLUSIONS 
 
This paper presents an integration of multilingual speech recognition into LID for code-switched 

speech using phonotactic features as language information. In this research work, two strategies 

are reported on to perform similar phoneme mapping of the target official languages. We have 
shown that existing monolingual corpora can handle code-switching utterances. The IPA-based 

approach is derived from linguistic knowledge, whereas the data-driven approach is based on the 

confusion matrix. Appropriate phoneme mapping approaches across the target languages offered 
robust context-dependent multilingual acoustic models which tended to produce acceptable ASR-

LID system performance. Our proposed IPA-based and data-driven approaches have shown a 

significant improvement in both PER and LID classification accuracy. The data-driven method 

outperforms the IPA-based approach. An acceptable PER was achieved with the data-driven 
approach when multilingual acoustic models were employed that were trained with 32 Gaussian 

mixtures per state. Again, the 64 Gaussian mixtures do improve the PER, but has no impact on 

the performance of LID accuracy. In future, we hope to train the multilingual ASR-LID system 
with more robust context-dependent code-switched acoustic models for further evaluation and 

performance analysis. We also aim to collect more code-switched speech for ASR and LID 

research in future. As part of extending this research work, we aim to investigate more South 

African languages where speakers use code-switching in their daily conversations. 
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