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ABSTRACT 
 

Machine learning techniques have become a vital part of every ongoing research in technical 

areas. In recent times the world has witnessed many beautiful applications of machine learning 

in a practical sense which amaze us in every aspect. This paper is all about whether we should 

always rely on deep learning techniques or is it really possible to overcome the performance of 

simple deep learning algorithms by simple statistical machine learning algorithms by 

understanding the application and processing the data so that it can help in increasing the 

performance of the algorithm by a notable amount. The paper mentions the importance of data 
pre-processing than that of the selection of the algorithm. It discusses the functions involving 

trigonometric, logarithmic, and exponential terms and also talks about functions that are purely 

trigonometric. Finally, we discuss regression analysis on music signals. 
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1. INTRODUCTION 
 

Regression analysis gained its importance when several statisticians found out its applications in 

the real-world such as predicting the price of land in a certain city, estimating the complex 

polynomials through working on the dataset provided, estimating whether a given medicine will 
work on a large amount of people, etc. [1] also gained its profound importance during the past 

decade with its description of solving various statistical models. [2] also came into the picture 

showing its influence over dealing with trigonometric functions, but, there are some areas where 
we need to understand the importance and need for a perfect combination of above-mentioned 

approaches in a simple way to enhance the accuracy of results and to understand the true 

efficiency of regression analysis in many other fields which recently growing with respect to the 
growing demand for new applications in research. Some primary variations of regression are [3-

5], etc. These algorithms have their own importance individually and are application-specific. 

Therefore, the practical realization of technical research applications needs their respective 

algorithms or approaches which can better the efficiency and accuracy of the applications with 
the least error possible. 

 

1.1. Motivation 
 

This paper discusses about trigonometric regression and polynomial regression on hypothesis 

involving logarithmic or exponential terms to establish the importance of adding features to the 
dataset for better results. Thus, the paper also provides the contrast between the performance 

delivered by the above-mentioned methods and simple neural networks. Hence, by establishing 
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the context, music signal analysis is performed considering the same idea. The idea of the paper 
is that a proper data pre-processing step can highly reduce the error and allows us to solve 

problems with much more light-weight and basic methods.  

 

2. REGRESSION ANALYSIS OF THE TRIGONOMETRIC FUNCTION 
 
In this section we will consider a trigonometric function as shown in equation 1. To take a 

completely random function, we considered generating a random function. To generate a random 

trigonometric function, we have used the python code as provided in listing1. In the code, there is 
a feature list containing all features of interest. There is a single 'For' loop ranging from 0 to 

length of feature list. An individual is allowed to choose a range which is equal to the number of 

terms that are required in the end polynomial. For each iteration of the loop, we randomly select 

coefficient for each term and the term itself from the feature list. Then, we multiply the 
coefficient and store the resulting string in a list known as function. We continue the same until 

the loop is completed. Hence, we end up having a list of terms as strings. Finally, we join all the 

strings using 'join' function which results in a random trigonometric polynomial in string 
datatype. It should be noted that range of loop is the number of terms one desires in the end 

function. One other point is that, feature 'x' is not considered while generating the function as the 

interest of this section was to discuss a pure trigonometric function. In this section 
 

Listing 1: Python Code for generating function with only trigonometric terms 

_____________________________________________________________________________ 

feature = ['x','np.sin(x)','np.cos(x)', 'np.sin(x)*np.cos(x)'] 
function = [] 

for i in range(len(feature)): 

   coef = str(np.random.choice(np.ara- 
                            -nge(100))) 

   term = coef + '*' + np.random.cho- 

            -ice(feature[1:]) 
   function.append(term) 

function = '+'.join(function) 

function = 'y = ' + function 

_____________________________________________________________________________ 
 

Equation (1) is the function taken to explain the importance of trigonometric features in 

regression analysis for this section. 
 

95*np.sin(x)*np.cos(x)+37*np.sin(x)+90*np.sin(x)*np.cos(x)+45*np.sin(x)*np.cos(x)         (1)  

 
 

Figure 1 : plot showing predictions on y-axis with inputs on x-axis for simple linear regression 
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Figure 2: plot depicting desired outputs for the inputs. 

 

 
 

Figure 3 : plot with predictions on y-axis and inputs on x-axis for polynomial regression 

 
If we carefully observe there are no terms with ‘x’ raised to a certain power.  When we apply 

linear regression analysis on the dataset with input as ‘x’, where ‘x’ belongs to the range $[-\pi, 

\pi]$ in steps of 0.01, and output ‘y’ calculated according to the equation (1) for thousand 
samples, we get the graph shown in figure 1 which depicts the performance of the linear regressor 

on the test set, whereas the expected performance or the desired performance is as shown in 

figure 2. Hence, we can decide that the linear regressor performed poorly as expected. Now, if we 
use a polynomial regressor and consider the hypothesis degree to be 2 and train on the same 

training data and test it, we obtain performance as shown in figure 3. It is expected that the 

polynomial regressor cannot predict the trigonometric terms as there is no feature which is 

trigonometric in nature. Now, one can always think about using a simple neural network [6], but 
that also would not work as the training set is too low for the neural network to generalize the 

trigonometric hypothesis and training the network excessively for a greater number of epochs 

would result in overfitting of data and also does not assure accuracy. We can also try with [7] but, 
we should not forget the fact that LSTM networks require 

 

 
 

Figure 4: plot with inputs on x-axis and predictions by simple linear regression after adding trigonometric 

features to the dataset on y-axis. 

 

a high amount of data and moreover are computationally expensive as compared to the simple 

neural networks and regression analysis discussed above. Now, if we closely look at the situation 
and introduce the trigonometric terms in the hypothesis considered in the case of simple linear 
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regression as redefined according to equation (2) and train on the dataset with a new hypothesis 
and apply linear regression analysis then we can observe the performance as shown in figure 4. 

Thus, by looking at figure 2 and figure 4, we can understand the importance of trigonometric 

features in linear regression provided the dataset has a trigonometric relationship. We can even 

look at table 1 to just checkup on the errors obtained with each regression approach discussed. 
Generally, trigonometric regression analysis need can be observed in the fields like signal 

processing and wave analysis. We are going to continue this idea as polynomial trigonometric 

regression in section 3 which actually makes us think to consider adding trigonometric features as 
a primary data preprocessing step whenever we encounter with regression analysis problems. 

 
Table 1 Error table for pure trigonometric function by different algorithmic approaches. 

 
ALGORITHM ABSOLUTE ERROR 

Proposed Approach 6.610267888618182e-12 

Linear Regression 18573.351509906905 

Polynomial Regression 15689.82990204867 

 

3. REGRESSION ANALYSIS OF POLYNOMIAL WITH TRIGONOMETRIC 

FEATURES 
 
In section 2 we have discussed function having only trigonometric terms without the mixture of 

linear or quadratic terms in ‘x’, where ‘x’ is the input value. Consider a function as described by 

equation 2 in which we observe terms such as ‘x*cos(x)’ and so on, which is difficult for simple 

neural networks and even the simple statistical regression algorithms like linear regression and 
polynomial regression to learn on minimal data. 

 

Equation 2 is generated using the code provided by listing 2. To briefly explain the algorithm, in 
first loop the degree of the polynomial is kept as range and all orders of input feature 'x' are 

included in the features list. Then, every term in the 'terms' list is included in the features list. 

Now, when the 'features' list is ready, a 'function' is defined, in which, an empty list 'T' is 
considered and the number of terms in the generated polynomial is decided at random by keeping 

a maximum upper-limit. Now, a loop is considered keeping number of terms as range and for 

each iteration a term is appended to list 'T' by generating the term with a randomly selected 

number of features. Finally, polynomial is created by joining the terms stored in list 'T'.  

 

Listing 2: Python code to generate a random mixed polynomial 

_____________________________________________________________________________ 
x = np.pi # buffer value 

functions = [] 

terms = ['np.cos(x)','np.sin(x)','np.tan(x)', 'np.log(x)','np.exp(x)'] 

features = [] 
for i in range(2): 

     features.append("x**"+str(i+1)) 

for i in terms: 
    features.append(i) 

# generating function 

def function(): 
    T = [] 

    number_terms = np.random.cho- 

                    -ice(np.arange(10))+1 

    for i in range(number_terms): 



Computer Science & Information Technology (CS & IT)                                   69 

 

        num_features = np.random.cho- 
                    -ice(len(features))+1 

        l = [] 

        for j in range(num_features): 

            l.append(features[np.random.cho- 
            -ice(np.arange(len(features)))]) 

        t = '*'.join(l) 

        T.append(t) 
    func = '+'.join(T) 

    func = 'y = ' + func 

    return func 
_____________________________________________________________________________ 

 

Hence, here too we can add the additional features which include trigonometric, logarithmic and 

exponential features in ‘x’ and also consider all permutations possible once the individual 
estimates the degree of polynomial the learning hypothesis would belong to in the same way as 

we do in case of normal polynomial regression. If we carefully observe figure 5 which depicts the 

predictions by support vector regression trained on dataset with inputs ranging from $-\pi$ to 
$\pi$ and outputs calculated according to equation 2, we see that the expected plot as in Figure 6 

is completely different from what has been predicted which leads to high absolute error on test 

set. When we apply polynomial regression analysis keeping the degree as 2, then also we can see 
that the plot by polynomial regression as depicted in figure 7 is mostly off in predicting the 

desired outputs as shown in figure 6. 

 

Y=[ex*cos(x)*tan2(x)]+[x3*sin(x)]+[x3*tan(x)*sin(x)*log(x)]+[x2]+[x3*cos(x)*tan(x)*ex*log(x)]
+[ex*tan(x)*x4]        (2) 

 

 
Hence, if we are able to actually consider the list of additional features which are all possible 

permutations of ‘x’ with trigonometric, logarithmic and exponential functions acting upon it and 

then apply linear regression analysis, we observe the desired plot as in figure 8 which is almost 

similar to actual relationship showcased in equation 2. If we compare figure 6 and figure 8, we 
can understand that the simple addition of all combination of functional features can affect the 

performance of an algorithm by a great extent. Table 2 depicts the errors obtained by discussed 

algorithms. 
 

Table 2 Error table for polynomial with complex terms by different algorithmic approaches 

 
Algorithm Absolute Error 

proposed approach 27.97901221743491 

Support Vector Regression 14177902477532.947 

Polynomial Regression 15.715957e+12 

 

If one thinks that the number of permutations is increasing with degree of the hypothesis then he 
can apply dimensionality reduction techniques such as principal component analysis and thereby 

decreasing the computational time taken. This approach is only successful when the input is 

related to output with assumed combinations of features, in this case which are trigonometric, 

logarithmic and exponential. We can also analyze data in preprocessing stage to identify more 
complex functions as features in ‘x’ depending upon the dataset. 
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Figure 5: plot depicting predictions on y-axis and input value on x-axis by support vector regression 

 

 
 

Figure 6: plot depicting expected outputs on y-axis for inputs on x-axis 

 

 
 

Figure 7: plot depicting predictions on y-axis for inputs on x-axis by polynomial regression 

 

 
 

Figure 8: plot depicting predictions on y-axis for inputs on x-axis by linear regression after addition of 

features discussed in section 3 

 

4. MUSIC SIGNAL ANALYSIS 
 

Music signal is one of the complicated signals out there and definitely making an machine 

learning algorithm to learn from it and make it figure out parameters such as amplitude, 



Computer Science & Information Technology (CS & IT)                                   71 

 

frequency and phase is a difficult task as the superposition of several sinusoidal waves change 
after very short amount of time over complete time interval, but, if we assume that there are only 

a constant number of waves superposed over each short time frame and consider a superposition 

as shown in equation 3, then we can optimize the parameters using many optimization algorithms 

out there. In this case we have taken gradient descent algorithm to optimize which is simple to 
understand and apply. Here, we considered a random background music track [8] for explanatory 

purpose and considered first 800,000 samples of the audio amplitudes from left channel, then, we 

have further divided the entire training set into 800 segments with each containing 1000 samples. 
These 1000 samples are trained thereby, optimizing the parameters in hypothesis which are 

amplitude, frequency and phase of each of the constant number of waves considered, here we 

assumed the constant value to be 20 for explanatory purpose. This summarizes the problem as to 
optimize the parameters frequency, amplitude and phase of each of the 20 waves in that particular 

time frame of 1000 samples using gradient descent assuming the step size as 1 and considering 

squared error as loss function. 

 

                                                                                    (3) 
 

a_i – amplitude parameter of ith wave 

f_i - frequency parameter of ith wave 

phase_i – phase parameter of ith wave 
 

One can always experiment upon different optimizing algorithms and consider different values 

for the hyperparameters mentioned according to the audio data they have. We have also 
normalized the time frame values which act as input by dividing each value on time axis with 

44100 and then subtracting the mean from the input array and finally dividing it with the standard 

deviation. Two approaches have been followed to actually perform regression analysis as 

described above. The first approach is simple way of optimizing all the parameters of a particular 
time frame simultaneously at each step of gradient descent [9], but, this method forces the waves 

to learn independently of each other which results in same optimized parameters for each wave, 

that is, for example if frequency is 1, amplitude is 1 and phase is 0 for the first wave in the 
hypothesis after optimizing, then, the each of the remaining 19 waves of that time frame will also 

have the same values for frequency, amplitude and phase respectively. From first approach one 

can easily understand that the conventional form of regression analysis cannot be performed for 
music signal and hence, we have considered a second approach which is to optimize the second 

wave with respect to first, third with respect to second and first, and so on, similar to cost 

functions described by Algorithm 1. 

 
As shown in the algorithm 1 we can update array ‘h’ which stores the superposition values of all 

‘i’ number of waves when optimizing ‘i+1’ wave’s parameters, so that, the superposition value 

can be added to redefine cost function for each wave pertaining to the same time frame and 
thereby, optimizing the parameters of each wave with respect to the values obtained by the 

superposition of previous waves. The figure 9 represents the plot between the desired amplitudes 

and the time, and, figure 10 shows the plot obtained by the hypothesis considered, which is the 
superposition of 20 sine waves, but, the plot as in figure 10 is obtained by calculating amplitudes 

according to equation 4, where we did not consider amplitude parameter of each sine wave of that 

time frame as they were not even close to the desired values and scaling up the error by large 

extent which can be observed in figure 11. This is a drawback currently but, if followed a 
different technique of optimization for amplitude parameter, then definitely we can make this 

approach work. 

 

                              (4)  
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One important thing is that, for optimizing amplitude or frequency or phase we considered the 
gradients as follows: 

 

                                                                   (5) 

                                           (6) 

                                        (7) 
 

Ga – amplitude gradient, Gf – frequency gradient, Gp – phase gradient 

_____________________________________________________________________________ 

Algorithm 1: Optimization 
_____________________________________________________________________________ 

 

Input: data x, size n; amplitudes y, size n; step s; starting index of time frame start 
Input: parameters parameters, size (20, 3) 

 

Initialize h = array(zeros(1000)) 
  

 for k=0 to 19 do 

   for j=0 to 9 do 

   for i=start to start+1000 do 
    Assign Ga=step*(hi+ parameter sk0*(sin(2πxi)-yi)*(sin(2π*xi)) 

   Assign 

   Gf = step*(hi+sin(2π*parametersk1*xi)-yi)*(2π*xicos(2π*parametersk1*x1)) 
    Assign 

Gp = step*(hi+sin(2π*xi+2π*parametersk2)-yi)*(2πcos(2πi*xi+2π*parametersk2)) 

   Assign parametersk_0 = parametersk_0-Ga 

   \STATE Assign parametersk_1 = parametersk_1-Gf 
   \STATE Assign parametersk_2 = parametersk_2-Gp 

   \ENDFOR 

   \ENDFOR 
   for v=start  to start+999 do 

    Assign w = vmod1000 

    Assign 
    hw = hw + (parametersk0 * np.sin(2 * np.π * (parametersk1 * xv + parametersk2))) 

   ENDFOR 

   ENDFOR 

_____________________________________________________________________________ 
 

Where, we only consider the effect of the parameter for which we compute the gradient. For 

example, while computing the gradient for amplitude parameter we make f_i as 1 and p_i as 0 
and hence, we are optimizing only amplitude with respect to the samples, which is to try fit 

amplitude parameter for that wave for that time frame completely. Similar pattern can be 

observed for frequency where a_i is made 1 and pi as 0 and in case of phase gradient ai is 1 and fi 
is also one. This can be understood as independent parameter training for which we got the 

results as shown in figure 10. We have also considered dependent parameter training where we 

try to optimize one with respect to other, for which the gradients are as follows: 

 

                                            (8) 

                                           (9) 

 (10) 

 

Ga – amplitude gradient, Gf – frequency gradient, Gp – phase gradient 
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Figure 9: plot original audio data with desired amplitudes on y-axis and time period on x-axis. 

 

 
 

Figure 10: plot with predicted amplitudes on y-axis and time period on x-axis by following independent 

parameter training excluding amplitude parameter. 
 

where, frequency is computed independently and amplitude is computed with respect to 

frequency parameter and finally phase parameter is computed with respect to frequency and 

amplitude parameter. For, dependent parameter training we observed a higher loss and hence, 
currently independent parameter training is better. On an important note, as we have not 

predicted the amplitude parameter for 20 waves of each time frame properly, we have divided the 

final value by 20 which should be the mean amplitude at that particular instant. The plot observed 
for dependent parameter training can be observed in figure 12 and we can also observe figure 11 

in which we calculated amplitudes considering amplitude parameter for each of 20 waves in that 

time frame and clearly decide why we did not consider amplitude parameter. 
 

 
 

Figure 11: plot with predicted amplitudes on y-axis and time period on x-axis by following independent 

parameter training including amplitude parameter where horizontal plot represents original signal. 
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Figure 12: plot with predicted amplitudes on y-axis and time period on x-axis by following dependent 

parameter training. 

 

5. CONCLUSION 
 

Regression algorithm is the most fundamental and important algorithm which can be powerful 

when hypothesis, optimization and features are selected properly. It has the potential to even 
perform better than the current advanced machine learning techniques. With this theory we try to 

propose that, as algorithm selection is important for an application, similarly, data pre-processing 

and hypothesis reformulation is also that important. We need to focus on formulating the 

underlying functions in pre-processing stage itself so that even on less amount of data, the 
algorithm can perform much more efficiently and we can eliminate the risks such as underfitting 

or overfitting. This also specifies that we need to conduct more experiments with each algorithm 

by reformulating some of its parts on the dataset, so that, we can understand some of the 
relationships in the dataset and even have a combination of different machine learning algorithms 

acting on same dataset which may be much more efficient, and also understand the power of 

interdisciplinary algorithms. This also sheds light on the fact that adding features by exploring 
dataset can boost algorithm’s performance and efficiency. 
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