

David C. Wyld et al. (Eds): MLIOB, SIPO, NET, DNLP, SOEA, AISCA - 2021

Pp.65-75, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111205

MUSIC SIGNAL ANALYSIS:
REGRESSION ANALYSIS

V. N. Aditya Datta Chivukula and Sri Keshava Reddy Adupala

Department of Computer science and Engineering, International Institute of

Information Technology, Bhubaneswar, Odisha, India

ABSTRACT

Machine learning techniques have become a vital part of every ongoing research in technical

areas. In recent times the world has witnessed many beautiful applications of machine learning

in a practical sense which amaze us in every aspect. This paper is all about whether we should

always rely on deep learning techniques or is it really possible to overcome the performance of

simple deep learning algorithms by simple statistical machine learning algorithms by

understanding the application and processing the data so that it can help in increasing the

performance of the algorithm by a notable amount. The paper mentions the importance of data
pre-processing than that of the selection of the algorithm. It discusses the functions involving

trigonometric, logarithmic, and exponential terms and also talks about functions that are purely

trigonometric. Finally, we discuss regression analysis on music signals.

KEYWORDS

Machine Learning, Regression, Music Signal Analysis.

1. INTRODUCTION

Regression analysis gained its importance when several statisticians found out its applications in

the real-world such as predicting the price of land in a certain city, estimating the complex

polynomials through working on the dataset provided, estimating whether a given medicine will
work on a large amount of people, etc. [1] also gained its profound importance during the past

decade with its description of solving various statistical models. [2] also came into the picture

showing its influence over dealing with trigonometric functions, but, there are some areas where
we need to understand the importance and need for a perfect combination of above-mentioned

approaches in a simple way to enhance the accuracy of results and to understand the true

efficiency of regression analysis in many other fields which recently growing with respect to the
growing demand for new applications in research. Some primary variations of regression are [3-

5], etc. These algorithms have their own importance individually and are application-specific.

Therefore, the practical realization of technical research applications needs their respective

algorithms or approaches which can better the efficiency and accuracy of the applications with
the least error possible.

1.1. Motivation

This paper discusses about trigonometric regression and polynomial regression on hypothesis

involving logarithmic or exponential terms to establish the importance of adding features to the
dataset for better results. Thus, the paper also provides the contrast between the performance

delivered by the above-mentioned methods and simple neural networks. Hence, by establishing

http://airccse.org/cscp.html
http://airccse.org/csit/V11N12.html
https://doi.org/10.5121/csit.2021.111205

66 Computer Science & Information Technology (CS & IT)

the context, music signal analysis is performed considering the same idea. The idea of the paper
is that a proper data pre-processing step can highly reduce the error and allows us to solve

problems with much more light-weight and basic methods.

2. REGRESSION ANALYSIS OF THE TRIGONOMETRIC FUNCTION

In this section we will consider a trigonometric function as shown in equation 1. To take a

completely random function, we considered generating a random function. To generate a random

trigonometric function, we have used the python code as provided in listing1. In the code, there is
a feature list containing all features of interest. There is a single 'For' loop ranging from 0 to

length of feature list. An individual is allowed to choose a range which is equal to the number of

terms that are required in the end polynomial. For each iteration of the loop, we randomly select

coefficient for each term and the term itself from the feature list. Then, we multiply the
coefficient and store the resulting string in a list known as function. We continue the same until

the loop is completed. Hence, we end up having a list of terms as strings. Finally, we join all the

strings using 'join' function which results in a random trigonometric polynomial in string
datatype. It should be noted that range of loop is the number of terms one desires in the end

function. One other point is that, feature 'x' is not considered while generating the function as the

interest of this section was to discuss a pure trigonometric function. In this section

Listing 1: Python Code for generating function with only trigonometric terms

feature = ['x','np.sin(x)','np.cos(x)', 'np.sin(x)*np.cos(x)']
function = []

for i in range(len(feature)):

 coef = str(np.random.choice(np.ara-
 -nge(100)))

 term = coef + '*' + np.random.cho-

 -ice(feature[1:])
 function.append(term)

function = '+'.join(function)

function = 'y = ' + function

Equation (1) is the function taken to explain the importance of trigonometric features in

regression analysis for this section.

95*np.sin(x)*np.cos(x)+37*np.sin(x)+90*np.sin(x)*np.cos(x)+45*np.sin(x)*np.cos(x) (1)

Figure 1 : plot showing predictions on y-axis with inputs on x-axis for simple linear regression

Computer Science & Information Technology (CS & IT) 67

Figure 2: plot depicting desired outputs for the inputs.

Figure 3 : plot with predictions on y-axis and inputs on x-axis for polynomial regression

If we carefully observe there are no terms with ‘x’ raised to a certain power. When we apply

linear regression analysis on the dataset with input as ‘x’, where ‘x’ belongs to the range $[-\pi,

\pi]$ in steps of 0.01, and output ‘y’ calculated according to the equation (1) for thousand
samples, we get the graph shown in figure 1 which depicts the performance of the linear regressor

on the test set, whereas the expected performance or the desired performance is as shown in

figure 2. Hence, we can decide that the linear regressor performed poorly as expected. Now, if we
use a polynomial regressor and consider the hypothesis degree to be 2 and train on the same

training data and test it, we obtain performance as shown in figure 3. It is expected that the

polynomial regressor cannot predict the trigonometric terms as there is no feature which is

trigonometric in nature. Now, one can always think about using a simple neural network [6], but
that also would not work as the training set is too low for the neural network to generalize the

trigonometric hypothesis and training the network excessively for a greater number of epochs

would result in overfitting of data and also does not assure accuracy. We can also try with [7] but,
we should not forget the fact that LSTM networks require

Figure 4: plot with inputs on x-axis and predictions by simple linear regression after adding trigonometric

features to the dataset on y-axis.

a high amount of data and moreover are computationally expensive as compared to the simple

neural networks and regression analysis discussed above. Now, if we closely look at the situation
and introduce the trigonometric terms in the hypothesis considered in the case of simple linear

68 Computer Science & Information Technology (CS & IT)

regression as redefined according to equation (2) and train on the dataset with a new hypothesis
and apply linear regression analysis then we can observe the performance as shown in figure 4.

Thus, by looking at figure 2 and figure 4, we can understand the importance of trigonometric

features in linear regression provided the dataset has a trigonometric relationship. We can even

look at table 1 to just checkup on the errors obtained with each regression approach discussed.
Generally, trigonometric regression analysis need can be observed in the fields like signal

processing and wave analysis. We are going to continue this idea as polynomial trigonometric

regression in section 3 which actually makes us think to consider adding trigonometric features as
a primary data preprocessing step whenever we encounter with regression analysis problems.

Table 1 Error table for pure trigonometric function by different algorithmic approaches.

ALGORITHM ABSOLUTE ERROR

Proposed Approach 6.610267888618182e-12

Linear Regression 18573.351509906905

Polynomial Regression 15689.82990204867

3. REGRESSION ANALYSIS OF POLYNOMIAL WITH TRIGONOMETRIC

FEATURES

In section 2 we have discussed function having only trigonometric terms without the mixture of

linear or quadratic terms in ‘x’, where ‘x’ is the input value. Consider a function as described by

equation 2 in which we observe terms such as ‘x*cos(x)’ and so on, which is difficult for simple

neural networks and even the simple statistical regression algorithms like linear regression and
polynomial regression to learn on minimal data.

Equation 2 is generated using the code provided by listing 2. To briefly explain the algorithm, in
first loop the degree of the polynomial is kept as range and all orders of input feature 'x' are

included in the features list. Then, every term in the 'terms' list is included in the features list.

Now, when the 'features' list is ready, a 'function' is defined, in which, an empty list 'T' is
considered and the number of terms in the generated polynomial is decided at random by keeping

a maximum upper-limit. Now, a loop is considered keeping number of terms as range and for

each iteration a term is appended to list 'T' by generating the term with a randomly selected

number of features. Finally, polynomial is created by joining the terms stored in list 'T'.

Listing 2: Python code to generate a random mixed polynomial

x = np.pi # buffer value

functions = []

terms = ['np.cos(x)','np.sin(x)','np.tan(x)', 'np.log(x)','np.exp(x)']

features = []
for i in range(2):

 features.append("x**"+str(i+1))

for i in terms:
 features.append(i)

generating function

def function():
 T = []

 number_terms = np.random.cho-

 -ice(np.arange(10))+1

 for i in range(number_terms):

Computer Science & Information Technology (CS & IT) 69

 num_features = np.random.cho-
 -ice(len(features))+1

 l = []

 for j in range(num_features):

 l.append(features[np.random.cho-
 -ice(np.arange(len(features)))])

 t = '*'.join(l)

 T.append(t)
 func = '+'.join(T)

 func = 'y = ' + func

 return func

Hence, here too we can add the additional features which include trigonometric, logarithmic and

exponential features in ‘x’ and also consider all permutations possible once the individual
estimates the degree of polynomial the learning hypothesis would belong to in the same way as

we do in case of normal polynomial regression. If we carefully observe figure 5 which depicts the

predictions by support vector regression trained on dataset with inputs ranging from $-\pi$ to
π and outputs calculated according to equation 2, we see that the expected plot as in Figure 6

is completely different from what has been predicted which leads to high absolute error on test

set. When we apply polynomial regression analysis keeping the degree as 2, then also we can see
that the plot by polynomial regression as depicted in figure 7 is mostly off in predicting the

desired outputs as shown in figure 6.

Y=[ex*cos(x)*tan2(x)]+[x3*sin(x)]+[x3*tan(x)*sin(x)*log(x)]+[x2]+[x3*cos(x)*tan(x)*ex*log(x)]
+[ex*tan(x)*x4] (2)

Hence, if we are able to actually consider the list of additional features which are all possible

permutations of ‘x’ with trigonometric, logarithmic and exponential functions acting upon it and

then apply linear regression analysis, we observe the desired plot as in figure 8 which is almost

similar to actual relationship showcased in equation 2. If we compare figure 6 and figure 8, we
can understand that the simple addition of all combination of functional features can affect the

performance of an algorithm by a great extent. Table 2 depicts the errors obtained by discussed

algorithms.

Table 2 Error table for polynomial with complex terms by different algorithmic approaches

Algorithm Absolute Error

proposed approach 27.97901221743491

Support Vector Regression 14177902477532.947

Polynomial Regression 15.715957e+12

If one thinks that the number of permutations is increasing with degree of the hypothesis then he
can apply dimensionality reduction techniques such as principal component analysis and thereby

decreasing the computational time taken. This approach is only successful when the input is

related to output with assumed combinations of features, in this case which are trigonometric,

logarithmic and exponential. We can also analyze data in preprocessing stage to identify more
complex functions as features in ‘x’ depending upon the dataset.

70 Computer Science & Information Technology (CS & IT)

Figure 5: plot depicting predictions on y-axis and input value on x-axis by support vector regression

Figure 6: plot depicting expected outputs on y-axis for inputs on x-axis

Figure 7: plot depicting predictions on y-axis for inputs on x-axis by polynomial regression

Figure 8: plot depicting predictions on y-axis for inputs on x-axis by linear regression after addition of

features discussed in section 3

4. MUSIC SIGNAL ANALYSIS

Music signal is one of the complicated signals out there and definitely making an machine

learning algorithm to learn from it and make it figure out parameters such as amplitude,

Computer Science & Information Technology (CS & IT) 71

frequency and phase is a difficult task as the superposition of several sinusoidal waves change
after very short amount of time over complete time interval, but, if we assume that there are only

a constant number of waves superposed over each short time frame and consider a superposition

as shown in equation 3, then we can optimize the parameters using many optimization algorithms

out there. In this case we have taken gradient descent algorithm to optimize which is simple to
understand and apply. Here, we considered a random background music track [8] for explanatory

purpose and considered first 800,000 samples of the audio amplitudes from left channel, then, we

have further divided the entire training set into 800 segments with each containing 1000 samples.
These 1000 samples are trained thereby, optimizing the parameters in hypothesis which are

amplitude, frequency and phase of each of the constant number of waves considered, here we

assumed the constant value to be 20 for explanatory purpose. This summarizes the problem as to
optimize the parameters frequency, amplitude and phase of each of the 20 waves in that particular

time frame of 1000 samples using gradient descent assuming the step size as 1 and considering

squared error as loss function.

 (3)

a_i – amplitude parameter of ith wave

f_i - frequency parameter of ith wave

phase_i – phase parameter of ith wave

One can always experiment upon different optimizing algorithms and consider different values

for the hyperparameters mentioned according to the audio data they have. We have also
normalized the time frame values which act as input by dividing each value on time axis with

44100 and then subtracting the mean from the input array and finally dividing it with the standard

deviation. Two approaches have been followed to actually perform regression analysis as

described above. The first approach is simple way of optimizing all the parameters of a particular
time frame simultaneously at each step of gradient descent [9], but, this method forces the waves

to learn independently of each other which results in same optimized parameters for each wave,

that is, for example if frequency is 1, amplitude is 1 and phase is 0 for the first wave in the
hypothesis after optimizing, then, the each of the remaining 19 waves of that time frame will also

have the same values for frequency, amplitude and phase respectively. From first approach one

can easily understand that the conventional form of regression analysis cannot be performed for
music signal and hence, we have considered a second approach which is to optimize the second

wave with respect to first, third with respect to second and first, and so on, similar to cost

functions described by Algorithm 1.

As shown in the algorithm 1 we can update array ‘h’ which stores the superposition values of all

‘i’ number of waves when optimizing ‘i+1’ wave’s parameters, so that, the superposition value

can be added to redefine cost function for each wave pertaining to the same time frame and
thereby, optimizing the parameters of each wave with respect to the values obtained by the

superposition of previous waves. The figure 9 represents the plot between the desired amplitudes

and the time, and, figure 10 shows the plot obtained by the hypothesis considered, which is the
superposition of 20 sine waves, but, the plot as in figure 10 is obtained by calculating amplitudes

according to equation 4, where we did not consider amplitude parameter of each sine wave of that

time frame as they were not even close to the desired values and scaling up the error by large

extent which can be observed in figure 11. This is a drawback currently but, if followed a
different technique of optimization for amplitude parameter, then definitely we can make this

approach work.

 (4)

72 Computer Science & Information Technology (CS & IT)

One important thing is that, for optimizing amplitude or frequency or phase we considered the
gradients as follows:

 (5)

 (6)

 (7)

Ga – amplitude gradient, Gf – frequency gradient, Gp – phase gradient

Algorithm 1: Optimization

Input: data x, size n; amplitudes y, size n; step s; starting index of time frame start
Input: parameters parameters, size (20, 3)

Initialize h = array(zeros(1000))

 for k=0 to 19 do

 for j=0 to 9 do

 for i=start to start+1000 do
 Assign Ga=step*(hi+ parameter sk0*(sin(2πxi)-yi)*(sin(2π*xi))

 Assign

 Gf = step*(hi+sin(2π*parametersk1*xi)-yi)*(2π*xicos(2π*parametersk1*x1))
 Assign

Gp = step*(hi+sin(2π*xi+2π*parametersk2)-yi)*(2πcos(2πi*xi+2π*parametersk2))

 Assign parametersk_0 = parametersk_0-Ga

 \STATE Assign parametersk_1 = parametersk_1-Gf
 \STATE Assign parametersk_2 = parametersk_2-Gp

 \ENDFOR

 \ENDFOR
 for v=start to start+999 do

 Assign w = vmod1000

 Assign
 hw = hw + (parametersk0 * np.sin(2 * np.π * (parametersk1 * xv + parametersk2)))

 ENDFOR

 ENDFOR

Where, we only consider the effect of the parameter for which we compute the gradient. For

example, while computing the gradient for amplitude parameter we make f_i as 1 and p_i as 0
and hence, we are optimizing only amplitude with respect to the samples, which is to try fit

amplitude parameter for that wave for that time frame completely. Similar pattern can be

observed for frequency where a_i is made 1 and pi as 0 and in case of phase gradient ai is 1 and fi
is also one. This can be understood as independent parameter training for which we got the

results as shown in figure 10. We have also considered dependent parameter training where we

try to optimize one with respect to other, for which the gradients are as follows:

 (8)

 (9)

 (10)

Ga – amplitude gradient, Gf – frequency gradient, Gp – phase gradient

Computer Science & Information Technology (CS & IT) 73

Figure 9: plot original audio data with desired amplitudes on y-axis and time period on x-axis.

Figure 10: plot with predicted amplitudes on y-axis and time period on x-axis by following independent

parameter training excluding amplitude parameter.

where, frequency is computed independently and amplitude is computed with respect to

frequency parameter and finally phase parameter is computed with respect to frequency and

amplitude parameter. For, dependent parameter training we observed a higher loss and hence,
currently independent parameter training is better. On an important note, as we have not

predicted the amplitude parameter for 20 waves of each time frame properly, we have divided the

final value by 20 which should be the mean amplitude at that particular instant. The plot observed
for dependent parameter training can be observed in figure 12 and we can also observe figure 11

in which we calculated amplitudes considering amplitude parameter for each of 20 waves in that

time frame and clearly decide why we did not consider amplitude parameter.

Figure 11: plot with predicted amplitudes on y-axis and time period on x-axis by following independent

parameter training including amplitude parameter where horizontal plot represents original signal.

74 Computer Science & Information Technology (CS & IT)

Figure 12: plot with predicted amplitudes on y-axis and time period on x-axis by following dependent

parameter training.

5. CONCLUSION

Regression algorithm is the most fundamental and important algorithm which can be powerful

when hypothesis, optimization and features are selected properly. It has the potential to even
perform better than the current advanced machine learning techniques. With this theory we try to

propose that, as algorithm selection is important for an application, similarly, data pre-processing

and hypothesis reformulation is also that important. We need to focus on formulating the

underlying functions in pre-processing stage itself so that even on less amount of data, the
algorithm can perform much more efficiently and we can eliminate the risks such as underfitting

or overfitting. This also specifies that we need to conduct more experiments with each algorithm

by reformulating some of its parts on the dataset, so that, we can understand some of the
relationships in the dataset and even have a combination of different machine learning algorithms

acting on same dataset which may be much more efficient, and also understand the power of

interdisciplinary algorithms. This also sheds light on the fact that adding features by exploring
dataset can boost algorithm’s performance and efficiency.

ACKNOWLEDGEMENTS

The authors would like to thank Abhiram Reddy for his participation, assistance and his valuable

time. We would like to thank our guide, Mr. Rupaj Kumar Nayak for his guidance for this work.

REFERENCES

[1] Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional linear regression analysis for

longitudinal data. The Annals of Statistics, 2873-2903.
[2] Eubank, R. L., & Speckman, P. (1990). Curve fitting by polynomial-trigonometric regression.

Biometrika, 77(1), 1-9.

[3] Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear regression.

Radiology, 227(3), 617-628.

[4] Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48, 500-506.

[5] Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.

[6] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2).

Cambridge: MIT press.

[7] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-

1780.

[8] DJ Sakthi. (2020, April 21). Charlie Bgm Mix[Video]. YouTube.
https://www.youtube.com/watch?v=nopQ6TT_pGo

[9] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

https://www.youtube.com/watch?v=nopQ6TT_pGo
https://www.youtube.com/watch?v=nopQ6TT_pGo

Computer Science & Information Technology (CS & IT) 75

AUTHORS

V. N. Aditya Datta Chivukula is currently an undergraduate student in the

Department of Computer Science and Engineering at International Institute of

Information Technology, India. His area of interests are in Machine learning, Deep

learning and Natural Language Processing.

Sri Keshava Reddy Adupala is currently an undergraduate student in the Department

of Computer Science and Engineering at International Institute of Information

Technology, India. His area of interests are in Data Analytics, Data Visualization and
Machine Learning.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Machine Learning, Regression, Music Signal Analysis.

