
David C. Wyld et al. (Eds): MLDS, NECO, SEMIT, IBCOM, SPPR, SCAI, CSIA, ICCSEA - 2021

pp. 193-202, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111816

FEDERATED LEARNING WITH

RANDOM COMMUNICATION AND
DYNAMIC AGGREGATION

Ruolin Huang, Ting Lu, Yiyang Luo, Guohua Liu and Shan Chang

College of Computer Science and Technology,

Donghua University, Shanghai, China 201620

ABSTRACT

Federated Learning (FL) is a setting that allows clients to train a joint global

model collaboratively while keeping data locally. Due to FL has advantages of data confidential

and distributed computing, interest in this area has increased. In this paper, we designed a new

FL algorithm named FedRAD. Random communication and dynamic aggregation methods are

proposed for FedRAD. Random communication method enables FL system use the combination

of fixed communication interval and constrained variable intervals in a single task. Dynamic

aggregation method reforms aggregation weights and makes weights update automately. Both

methods aim to improve model performance. We evaluated two proposed methods respectively,

and compared FedRAD with three algorithms on three hyperparameters. Results at CIFAR-10
demonstrate that each method has good performance, and FedRAD can achieve higher

classification accuracy than state-of-the-art FL algorithms.

KEYWORDS

Federated Learning, Random Communication, Dynamic Aggregation, Self-learning, Distributed

Computing.

1. INTRODUCTION

Local devices such as mobile phones own a lot of data. However, due to data privacy and device

ability, it is impractical to conduct centralized training at central server by gathering all the data

from clients[1]. To address these problems, federated learning (FL)[2] is proposed. FL allows

clients to train a joint global model collaboratively while keeping data locally. In this way, FL
has advantage of data confidential, distributed storing and computing.

A typical FL[3] system consists of two stages connected by communication, (1) clients train local
models with their local private datasets independently, and (2) server aggregates the local models

into a joint global model. Since communication and aggregation are two primary performance

bottlenecks of FL, interests in these two areas have increased.

In this paper, we designed a new FL algorithm named FedRAD. Random communication and

dynamic aggregation methods are proposed for FedRAD. By using the combination of fixed

communication interval and constrained variable intervals, random communication method
enables FL system try various intervals in a single task so that we hope it can improve model

accuracy. By presenting a new form of aggregation weights and making weights update

automately, dynamic aggregation method enables system utilizes mutural impact between global
model and local models, so as to increase task accuracy. In addition, dynamic aggregation

http://airccse.org/cscp.html
http://airccse.org/csit/V11N18.html
https://doi.org/10.5121/csit.2021.111816

194 Computer Science & Information Technology (CS & IT)

method not only puts additional but a little computation burden on powerful server instead of
resource-constrained clients, but also can apply to modern CNN. We evaluate two methods

respectively, and compare FedRAD with three algorithms on three hyperparametes. Results at

CIFAR-10 demonstrate that each method outperforms compared way, and FedRAD can obtain

higher accuracy than state-of-the-art FL algorithms.

We organize this paper as follows. Section 2 states related works. Section 3 states two proposed

methods respectively and provides an overview of FedRAD constructed by two methods, the
performance of two methods and FedRAD algorithm is evaluated in section 4, section 5

summarizes the whole content of this paper.

2. RELATED WORK

Existing algorithms mainly focus on reducing the amount of parameters in communication. For

example, Suresh et al.[5] uses a constant number of model in communication, and Horvath et

al.[6] ignores the mantissa of parameters in model when communicating. However, these
algorithms reduced the amount of parameters at the cost of decreasing task accuracy. It is know

that accuracy is important to classification task such as identification task in self-driving car[7].

In order to improve model accuracy, many works can be focused on communication scheme[3].
For example, server and clients communicate once per fixed number of interval in these

algorithms[5,6], which, is called fixed communication scheme. Wang et al.[8] proved that

communication interval can affect the performance of the FL system. However, it is hard to get

the proper communication interval before training.

Aggregation is another performane bottleneck in FL. McMahan et al.[2] proposed the standard

aggregation algorithm federated averaging (FedAvg). FedAvg provides an averaging aggregation
method that aggregates parameters of local models by setting weights relevant to the sizes of

local datasets. Xiao et al.[9] proved that averaging parameters may not be the optimum way. In

order to improve the performance of FedAvg, Sahu et al.[10] presented FedProx keeping local
updates close to the original global model by adding a proximal term to the client cost functions.

Although it considers the impact of global model on local updating, it increases the amount of

computation on clients. To reduce the computation on clients, Yurochkin et al.[11,12] proposed

Probabilistic Federated Neural Matching (PFNM) by matching the neurons of client models
before averaging. However, it only works with simple architectures, e.g. fully connected network.

Obviously, all of these aggregation algorithms can not consider the impact of global model on

local updating, reduce the amount of computation on clients or apply to modern architecture (e.g.
convolutional neural network, CNN) at the same time.

3. METHODS

In this section we introduce FedRAD. First, we state the proposed random communication
method. Then, we introduce proposed dynamic aggregation method. Finally, we provide an

overview of FedRAD constructed by two methods.

3.1. Random Communication

Since it is hard to use the proper communication interval before training, we first enable FL
system use fixed communication scheme in the first half of training by using fixed interval. Then,

system uses proposed random communication scheme in the second half of training by using

constrained variable intervals. In terms of large interval leads to deterioration of the task accuracy

Computer Science & Information Technology (CS & IT) 195

[8], we add a constraint on variable communication interval. Random communication method is
as follows.

Let E denote total training epochs, f denote the fixed number of local training epochs,

 Et1|*Ntsett  denote the set of the training epoch, sete denote the set of epochs

communication happens, and set int denote the set of communication intervals.

First, we partition set t into three subsets according to f and the middle training epoch  E/2 .

In terms of f is not necessarily divisable by E , these three subsets are described as

  f*f2/E,1set t1  ,     f*f/Ef*f2/Eset t2 ， and   E,f*f/Eset t3  respectively.

Then, we construct set int according to three subsets. For t1set , we add f of quantity  f2/E

into set int . In this way, FL system train as fixed communication scheme. For t2set , we

sequentially take one subset of t2set with the length of f without replacement. During each

taking, we select a element randomly of taken subset and add it into sete . After the final

selection, we set the prior element of the first element in sete as value 0, and sequentially

calculate the difference value between each element in sete with its prior element. The purpose

of this way is to add a constraint on variable communication interval. i.e. By limitting the

selected element (i.e, the selected communication epoch e) in the range of length f , we make

the variable communication intervals the maximum value as 1-2f and the minmum value as 1 ,

so that prevent the FL system training with too much large interval. In this way, FL system trains

as proposed dynaimc communication scheme. For t3set , we do nothing. If f can be divisable by

E , t3set will not exist. Otherwise, for each t3sett , the FL system training as fixed

communication scheme does not communicate. So in order to compare proposed method with

fixed method accurately in experiment, we do nothing on t3set .

Finally, the construted set int is applied to server. Server broadcasts global model together with

one taken element in set int to clients. The element should be taken in order without replacement.

Clients then train the global model locally, setting the value of broadcast element as local training

epochs.

Obviously, FL system in our method will follow fixed communication sheme when t1sett ,

otherwise it will follow random scheme. In terms of combining two schemes to get good

performance, random scheme has notable efficiency. Therefore we call this combination as
random communication method. The algorithm is described as follows:

196 Computer Science & Information Technology (CS & IT)

Algorithm 1 : Random Communication

1：Input: The total training epochs E , the fixed number of local training epochs f .

2：Initialize the ‘middle’ partition epoch   f* f2/E , 01sete ][, set int
 , 1i  and 1j 

3：for t in range(1, E) do:

4： if   f*f2/Et1  and 0f/t  :

 fiset int ][

5： elif   2f*f2/Et  : # ‘randint(a,b]’ denotes selecting a integer in range of (a, b] randomly

   t ,E/2randintjsete ][

 11jsetjsetiset eeint ][][][

6： elif   2f*f2/Et  and 0f/t  :

 t f,-trandintjsete ][

11jsetjsetiset eeint ][][][

7： Output: setint

3.2. Dynamic Aggregation

In terms of averaging is not the optimum way for aggregation [8], we proposed a new form for

aggregation weights in this paper firstly. Then, by using a simple neureul network, aggregation
weights can update automatically. This method is as follows.

First, we reform the aggregation weights based on fomula in FedAvg[2] as:

   M·
N

N
·kWGM k

n

1k

k 
 （1）

Where GM denotes global model, n denotes the amount of client, N k denotes size of local

dataset Dk , N denotes size of all Dk , M k denotes local model and  kW denotes proposed

weight of local model M k .  kW will be described initially as:

  
 


n

1k

e
·k

e
k

e
·k

e
k

acc·acc

acc·acc
kW （2）

Where acc
e
k denotes task accuracy of M k at current communication epoch e . In this way, we

extend the impact of local models which have better performances.

Then, to make  kW update automatically, here we use a 2-layer neural network NeuNet since

neural network has the advantage of self-learning[13]. This work focused on how to set the

optimization goals in NeuNet . In terms of NeuNet and global model share the purpose of

decreasing task loss, NeuNet can use this shared purpose for self-learning. To that aim,

NeuNet requires a connection between its output layer and FL system (as shown in Figure 1).

This connection is used to one-way deliver a loss value SysLoss from server to output layer of

NeuNet , to set SysLoss as the loss for back propagation in NeuNet . The delivered SysLoss is

the average loss of global model after the last communication, that is, the average loss of each

client tested on local test dataset before local training. In this way, server do not need to gather

local private data from clients to test the loss of global model. Accordingly, let inputs of NeuNet

as weights of all M k and loss as SysLoss , the updated aggregation weight  kW for M k can be

calculated as:

Computer Science & Information Technology (CS & IT) 197

    
 kW

SysLoss
·kWkW



 η （3）

Fomula 3 is back propagation fomula in NN[14], where η denote learning rate of NeuNet .

Thereby, dynamic aggregation method utilizes the impact of global model on local models

complementarily besides considers the influence of local models on global model according to
Formula 2. The algorithm is as follows.

Algorithm 2 : Dynamic Aggregation

1：Input: The set of accuracy on local models SETACC, the set of local models SETM, and the set of task loss SETLOSS.

2：Initialize 2-layer neural network model NeuNet, and the average task loss Sysloss = 0

3：for k in range(1, |SETM|+1) do:

4：  
 


n|SET|

1k kk

kk

M

acc·acc

acc·acc
kW

5： SysLoss += SETM[k]

6：SysLoss = SysLoss / |SETM|

7：set SysLoss as loss for back propagation in NeuNet, and get the updated W[|SETM|]

7：   M·
N

N
·kWGM k

|SET|

1k

kM

 


8：Output: GM

3.3. FedRAD

Based on the random communication method designed in section 3.1 and the dynamic

aggregation method in section 3.2, a new federated learning algorithm named FedRAD is

proposed in this paper. Based on typical FL system[3], FedRAD consists of one server and

several clients. The global model in server and the local model in each client adopt the same
model, such as AlexNet. As can be seen from the server block in Figure 1, both methods

proposed in this paper are applied to server, which has the advantage of placing the extra but

small computation burden on server rather than the resource-constrained clients.

Figure 1. Structure of FedRAD

This system repeats following four steps until the training end, (1) server distributes global model
and a communication interval INT generated by random communication method to clients, (2)

198 Computer Science & Information Technology (CS & IT)

clients first use global model to test on the local test dataset to get the loss, then train on global
model using local training dataset with INT epochs, and test on local models to get task accuracy,

(3) clients report their trained models, loss and accuracy to server, (4) server aggregates local

models into a new global model according to dynamic aggregation method. The algorithm is as

follows.

Algorithm 3 : FedRAD t is current epoch; GM is the global model; Interval is the set of communication intervals; E is the total of

training epoch; f is the fixed communication interval; Mk is the local model; Dk is the local training dataset of client k; Tk is the local

testing dataset of client k.

Server：

1： if t == 1:

2： Initialize GM0

3： Interval <= Random Communication (E, f)

4： else:

5： Receive Mk, acck, lossk clients report

6： construct SETACC with all acck, SETM with all Mk, and SETLOSS with all lossk

7： GM <= Dynamic Aggregation (SETACC, SETM, SETLOSS)

8：Distributes GM0 or GM, and Interval[i++] to clients #i denotes a increment variable, which initialized as 0

Client k：

9：initialize Mk <= GM, e <= Interval

10：tests Mk on Tk to get lossk
0

11：trains Mk on Dk with e epochs locally to get acck
+e, Mk

+e

12：communicate with server to report lossk
0, acck

+e, Mk
+e

4. EXPERIMENTS

In this section, we first state experiment settings in section 4.1. Then, we evaluate two proposed

methods respectively and present an evaluation of FedRAD compared with three algorithms on

three hyperparametes in section 4.2.

4.1. Setup

4.1.1. Task and dataset

Our training task is image classification on CIFAR-10. We separate smaller datasets of various

sizes from the training set and further use data augment method to simulate several conditions.

Test images are used for a global test after each round. For different models, we record the test
accuracy as the metric to compare model performance.

4.1.2. Baselines

For random communication method, we compare it with typical fixed method. For dynamic

aggregation method, we compared it with FedAvg and FedProx. For FedRAD, we compare it

with three algorithms FedAvg, FedProx and centralized training. In addition, in order to ensure
the accuracy of comparison results, modern CNN architecture MobileNet is used as learning

model among all comparison algorithms.

4.2. Results

4.2.1. Performance of two methods

Random communication Since FedAvg and FedProx both communicate as fixed scheme, here

we compared proposed random method with typical fixed method. Fig. 2(a) and Table 1 show the

compared results, where “fixed” denotes a FL system with fixed communication method, and

Computer Science & Information Technology (CS & IT) 199

“Random” denotes system with random communication method with the same communication

amount T under the setting *c  . We can see in Fig. 2(a) that enlarging f does not always

work for all conditions, which matches the conclusion made in the previous work[2]. In addition,

since it is hard to know the proper number of communication interval for certain task before
training, FL system with random communcation method can use various intervals in training, so

that improve model performance. It can be seen in Fig. 2(a), in case of assigning different

communication interval f as 4, 5, 6, and 7, random group performs better than the fixed group,

which demonstrates the availability of proposed method.

Figure 2. Comparative experiments results. (a) The performance of the model depending on the

communication methods. (b) The performance of the model depending on the aggregation methods.

Dynamic aggregation Since FedAvg and FedProx have different aggregation methods, here we

compared proposed dynamic method with FedAvg and FedProx. Fig. 2(b) and Table 1 show the

compared results, where “Averaging” denotes a FL system with federated averaging method,
“Prox” denotes system with FedProx method, “Wei-Agg” denotes system with proposed form of

aggregation weights method, and “Dyn-Agg” denotes system with proposed dynamic aggregation

method. It could be seen that weighted aggregation shows a little better performance than
FedAvg, but it could not reach the height of FedProx. Dynamic aggregation method shows more

flexible and efficient ability than others, which demonstrates the availability of proposed method.

Table 1. Trained summary on MobileNet over CIFAR-10 as shown in Figure 2.

hyperparameter Algorithm FedAvg Ran-Com FedProx Wei-Agg Dyn-Agg

Communication

interval

4 68.71 69.68

5 69.21 69.78

6 66.68 69.69

7 68.87 69.86

Iteration amount

(* client amount)

5 61.85 62.79 62.00 63.23

10 66.69 66.83 66.69 67.00

15 67.99 67.89 68.00 68.27

20 69.11 69.55 69.05 69.89

4.2.2. Performance of FedRAD

Dataset size It is known that model performs better when more training data is available. To

simulate this scenario, we first partition the entire training CIFAR-10 dataset into n parts, where

n denotes the client amount. We then augment data of original entire dataset and concatenate

200 Computer Science & Information Technology (CS & IT)

n parts with data-augment parts for each client’s demand. Using this strategy, we partition the

training set into n sub-datasets containing 5/8/10/20 thousand (k) points each. Figure 3(a) and

Table 2 show that centralized training performs better than others when dataset size is 5k, while

the gap is closing as size increasing. The augment methods we used are not sufficient to fill data

variety might account for the result[15]. Still it could demonstrate that FedRAD performs better
than FedAvg and FedProx, and obtains comparable even slightly higher accuracy than centralized

training.

Figure 3. Comparative performances among models over three hyperparameters. (a) Influence of dataset

size. (b) Influence of iteration amount. (c) Influence of client amount.

Iteration amount Training iteration also matters to model performance. Thus we further test

influence of iteration amount. Results (Fig. 3(b) and Table 2) show that FedRAD obtains higher
accuracy than FedAvg and FedProx, and achieves similar performance with centralized training.

Client amount We already know that model performs better as increasing the amount of training
data and epoch. Challenge here is when new clients participate a FL system which already works

for a while, they may not adapt to global model at short notice, which can decrease the model

accuracy despite the growing data size and iteration amount. To simulate this scenario, we first

let 3 clients first join the FL system, then add 2, 3, 2 clients in system respectively in each 200
epochs. Results (Fig. 3(c) and Table 2) show that FedRAD obtains higher accuracy than FedAvg

and FedProx when handling new participants.

To sum up, each method we proposed outperforms typical or state-of-the-art methods. FedRAD

consists of two methods obtains higher task accuracy compared with FedAvg and FedProx, and

achieves similar performance with centralized training.

Table 2. Trained summary on MobileNet over CIFAR-10 as shown in Figure 3.

hyperparameter Algorithm FedAvg FedProx Centralized FedRAD

Dataset size

(* thousand)

5 66.82 67.27 68.04 71.82

8 75.48 74.54 76.67 76.48

10 78.52 79.96 80.58 79.52

20 79.21 80.22 81.08 81.22

Iteration amount

(* client amount)

5 73.76 74.54 75.56 76.70

10 75.12 76.10 77.10 77.00

15 75.98 77.08 78.00 78.38

20 77.98 79.08 80.28 79.92

Computer Science & Information Technology (CS & IT) 201

Client amount

4 63.34 64.55 66.02 67.62

6 71.00 72.06 73.06 72.61

8 74.13 75.17 76.37 76.48

10 77.66 78.98 80.98 79.52

5. SUMMARY

Conclusions This paper proposed a new federated learning algorithm with random

communication and dynamic aggregation (FedRAD). Random Communication method uses the
combination of fixed communication interval and constrained variable intervals that FL system

can try various intervals in a single task, so as to improve model performance. Dynamic

aggregation method reforms aggregation weights and updates weights automately that considers
mutural impact between global model and local model, aiming to increase task accuracy. Thus,

FedRAD consolidates several advantages into a single framework. It considers mutural impact

between global model on local model, puts additional computation burden on powerful server
instead of resource-constrained clients, applies to modern architectures, and all while improves

task accuracy. Though, the proposed random communication method can not address the problem

of performance divergence caused by too large communication interval still as well as state-of-

the-art methods, and the proposed dynamic aggregation method is a whole-wise way compared
with element-wise way[11]. Thus, further works can be focused on as follows.

Future works For communication, we will try to reform communication scheme to a gradual
way with introducing incremental learning (IL)[16]. Since IL has the advantage of promoting the

connection of old and new tasks[17], FL system with IL can face the problem of unbalanced data

distribution. And for aggregation, we will devote to design a element-wise method used for
modern complex CNNs that registering neurons before aggregating[11], so as to improve model

performance. Thus, we will devote to design a more effective and flexible FL algorithm than

popular algorithms.

ACKNOWLEDGEMENTS

This work is supported by Shanghai Municipal Natural Science Foundation (Grant No.

21ZR1401200, Grant No.18ZR1401200), Special Fund for Innovation and Development of
Shanghai Industrial Internet (Grant No. 2019-GYHLW-01004). (Corresponding author: Ting Lu)

REFERENCES

[1] Barrachina, S. , A Castelló, M Catalán, Dolz, M. F. , & Mestre, J. I. . (2021) “Pydtnn: a user-

friendly and extensible framework for distributed deep learning”, The Journal of Supercomputing(4).

[2] Mcmahan, H. B. , Moore, E. , D Ramage, Hampson, S. , & Arcas, B., (2017) “Communication-

efficient learning of deep networks from decentralized data”, In Proceedings of the 20th International

Conference on Artificial Intelligence and Statistics, pp1273-1282.

[3] Zhang, C. , Xie, Y. , Bai, H. , Yu, B. , & Gao, Y. , (2021) “A survey on federated learning”,

Knowledge-Based Systems, Vol. 216, No. 1, pp106775.
[4] Peter, Kairouz. , H. Brendan, McMahan. , Brendan, Avent. , Aurélien, Bellet. , & Mehdi, Bennis. ,

(2019) “Advances and Open Problems in Federated Learning”, arXiv preprint, arXiv:1912.04977.

[5] Suresh, A. T. , Yu, F. X. , Kumar, S. , & Mcmahan, H. B. , (2017) “Distributed mean estimation

with limited communication”, InProceedings of the 34th International Conference on Machine

Learning, Vol. 70, pp3329–3337.

[6] Horvath, S. , Ho, C. Y. , Horvath, L. , Sahu, A. N. , & Richtarik, P. , (2019) “Natural compression

for distributed deep learning”, arXiv preprint arXiv:1905.10988.

202 Computer Science & Information Technology (CS & IT)

[7] Cao, D. , Chang, S. , Lin, Z. , Liu, G. , & Sun, D. , (2019) “Understanding Distributed Poisoning

Attack in Federated Learning”, IEEE, 25th International Conference on Parallel and Distributed

Systems (ICPADS).

[8] Wang, H. , Yurochkin, M. , Sun, Y. , Papailiopoulos, D. , & Khazaeni, Y. , (2020) “Federated

learning with matched averaging”, arXiv preprint, arXiv:2002.06440.
[9] Xiao, P. , Cheng, S. , & Stankovic, V. , (2020) “Averaging Is Probably Not the Optimum Way of

Aggregating Parameters in Federated Learning”, Entropy, Vol. 22, No. 3, pp314.

[10] Li, T. , Sahu, A. K. , Zaheer, M. , Sanjabi, M. , Talwalkar, A. , & V Smith. , (2018) “Federated

optimization in heterogeneous networks”, arXiv preprint, arXiv:1812.06127.

[11] Yurochkin, M. , Agarwal, M. , Ghosh, S. , Greenewald, K. , Hoang, T. N. , & Khazaeni, Y. ,

(2019) “Statistical model aggregation via parameter matching”, In Advances in Neural Information

Processing Systems, 2019a, pp10954–10964.

[12] Yurochkin, M. , Agarwal, M. , Ghosh, S. , Greenewald, K. , Hoang, T. N. , & Khazaeni, Y. ,

(2019) “Bayesian nonparametric federated learning of neural networks”, In International Conference

on Machine Learning, 2019b, pp7252–7261.

[13] Seo, J. W. , Jung, H. G. , & Lee, S. W. , (2021) “Self-augmentation: generalizing deep networks to

unseen classes for few-shot learning”, Neural Networks, pp12.
[14] Zhang, D. , & Lou, S. , (2021) “The application research of neural network and bp algorithm in stock

price pattern classification and prediction”, Future Generation Computer Systems, Vol.115, pp872-

879.

[15] Perez, L. , & Wang, J. , (2017) “The effectiveness of data augmentation in image classification using

deep learning”, arXiv preprint, arXiv: 1712.04621.

[16] Li, Z. , & Hoiem, D. , (2017) “Learning without forgetting”, IEEE Transactions on Pattern Analysis

& Machine Intelligence.

[17] Eba, B. , Ap, A. , & Ik, B. , (2021) “A comprehensive study of class incremental learning algorithms

for visual tasks”, Neural Networks, Vol.135, pp38-54.

AUTHORS

Ruolin Huang received her bachelor’s degree in 2019, from Qufu Normal University, Rizhao, China. She

is currently a master student in College of Computer Science and Technology, Donghua University,

Shanghai, China. Her research interests include, Federated Learning and Computer Vision.

Ting Lu is currently an associate professor in College of Computer Science and Technology, Donghua

University, Shanghai, China. Her research interests include, Wireless Network and Mobile Computing et al.

Yiyang Luo is currently a master student in College of Computer Science and Technology, Donghua

University, Shanghai, China.

Guohua Liu is currently a professor in College of Computer Science and Technology,

Donghua University, Shanghai, China. His research interests include, Outsourcing database

and Privacy Protection et al.

Shan Chang is currently a professor in College of Computer Science and Technology,
Donghua University, Shanghai, China. Her research interests include, Internet of Things

and Internet of Vehicles et al.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Federated Learning, Random Communication, Dynamic Aggregation, Self-learning, Distributed Computing.

