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ABSTRACT 
 

This paper aims to demonstrate the feasibility of our proposed method for fingerprinting 

different classes of wireless devices. Our method relies on the observation that different device 

types, or indeed different models of the same type, have different wireless radiation patterns. We 

show in detail how a small set of stationary receivers can measure the radiation pattern of a 

transmitting device in a completely passive manner. As the observed device moves, our method 

can gather enough data to characterize the shape of the radiation pattern, which can be used to 

determine the type of the transmitting device from a database of patterns. We demonstrate that 

the patterns produced by different models of smartphones are easily different enough to be 
identified. Our measurements are repeatably measurable using RSS with commercial-off-the-

shelf hardware. We then use simulations to show the success of our method as a classifier. 

 

KEYWORDS 
 

Wireless Radiation Patterns, Device Fingerprinting, Identification. 

  

1. INTRODUCTION 
 

Antennas do not radiate power equally in all directions, and the resulting pattern of transmission 
energy is called a radiation pattern (or antenna pattern). The ability to remotely measure the 
radiation pattern of a device has a range of potential applications, from checking compliance with 
emission regulations and standards, optimising transmission power, smart routing and 
beamforming, to fingerprinting and identifying devices based on unique pattern shapes.  
 
To demonstrate the power of the idea, we focus on fingerprinting smartphone models, which by 

itself has a number of interesting applications in intrusion detection; commercial analysis of the 
phone models in a group of users (e.g., for app development); and network analysis to understand 
what device types are using a network, for example, ensuring compliance with bring your own 
device to work policies. While fingerprinting provides a convenient application with which to 
demonstrate our radiation pattern measurement technique, the resulting fingerprinting scheme has 
a lot of benefits, making it a good competitor to existing approaches. 
 
Existing approaches often focus on how the chipset or firmware behaves under certain 

circumstances. Fingerprinting in such schemes is conducted by either interrogating the device 
with differently formed packets or observing the device's particular behavioural characteristics. 
This can yield good results but will often require additional specialist hardware to inject packets 
or measure properties that cannot be achieved with commercial-off-the-shelf (COTS) networking 
infrastructure hardware. Additionally, when actively sending out probing packets, you alert the 
device to the use of fingerprinting. 
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Our method is entirely passive and relies on received signal strength (RSS), which is widely 
available across almost all networking hardware as it plays a vital role in network management 
and troubleshooting. This makes our fingerprinting method an ideal choice for situations where 
an existing wireless infrastructure already exists, e.g., a company WiFi installation or a LoRa 

city-wide network. 
 
A receiver in a fixed location will measure the RSS of a transmission from another device 
differently depending on the transmitting device's radiation pattern, location, and orientation. 
When compared to measurements by other collaborating devices that form a measurement 
infrastructure, this will allow the calculation of several points on the radiation pattern of the 
transmitting device. In this paper, we use multiple receivers to measure several points on the 
pattern simultaneously for a single packet and attempt to find parts of known patterns that match 

the shape. We use this to create a fingerprinting method for smartphone models, exploiting the 
fact that each manufacturer has a slightly different antenna design and a different internal 
structure of the phone. As a by-product, the method also produces an estimate of the location and 
orientation of the device. 
 
We summarize our main contributions as follows: 
 

 We identify the challenges of using RSS for fingerprinting when not using location as a 
proxy for identity. 

 We propose a methodology for passively measuring and reconstructing the radiation 
pattern of nearby wireless devices. 

 We measure and analyze patterns from a range of smartphones to show that different 
models have significantly different patterns. 

 We analyze how attacks on this type of system can be performed to break the model 
fingerprinting mechanism, and we discuss the required setup to mitigate those attacks. 

 

The paper is organised as follows: in Section 2 we cover the necessary background knowledge to 
understand our proposal, followed by a discussion of related work in Section 3. In Section 4 we 
define the system model and adversary model. Section 5 presents the challenges to using 
radiation patterns for fingerprinting. In Section 6 we propose our method of fingerprinting. In 
Section 7and 8 we evaluate our solution with simulations and we compare patterns measured 
from a selection of smartphones. In Section 9 we perform an analysis to show the requirements to 
be secure against attacks. Finally, we conclude in Section 10. 

 

2. TECHNICAL BACKGROUND 
 

We now discuss the background knowledge related to radiation patterns necessary to understand 
our proposed method. 
 
Directivity is a measure of how directional an antenna's pattern is, and it is one way to represent a 
radiation pattern. Directivity is defined as ``The ratio of the radiation intensity in a given 
direction from the antenna to the radiation intensity averaged over all directions'' [14]. From the 

definition, the directivity for a given elevation and azimuth, D(θ,ϕ), is calculated by: 
 

 
𝐷(𝜃,𝜙) =

𝑈(𝜃, 𝜙)

𝑃𝑟𝑎𝑑/(4𝜋)
 

(1) 

 

Where Prad is the total radiated power output and U is the radiation intensity at the angle θ,ϕ. 
Prad  may be found through several methods, including: using the chipset specification; through 
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calculation using input power and efficiency; an estimate can be retrieved from the US Federal 

Communications Commission (FCC) certification test report; or by calculation of U(θ,ϕ) 
integrated over the spherical surface if the pattern is represented by an equation [1]. 
 

 
𝑃𝑟𝑎𝑑 = ∫ ∫ 𝑈

π

0

2π

0

sin θ  𝑑θ 𝑑 
(2) 

 
Directivity may be expressed as a ratio in dimensionless units or in decibels relative to another 
antenna. Most commonly, this is the theoretically perfect isotropic radiator, with a directivity of 1 
expressed as a ratio or 0 dBi in all directions. The equations to convert between the two are as 
follows: 
 

 𝐷𝑑𝐵𝑖 = 10 ⋅ 𝑙𝑜𝑔10𝐷 (3) 

 
𝐷 = 10

(
𝐷𝑑𝐵𝑖
10

)
 

(4) 

 

3. RELATED WORK 
 

There are two types of fingerprinting of interest: 1) unique device fingerprinting, where every 
unique device is distinguishable from every other; and 2) device type fingerprinting, where 
devices are categorised into groups based on some element of common hardware, software, or 
behaviour.  
 

Unique device fingerprinting gives a very narrow and specific identity, whereas device type 
fingerprinting gives a very broad identity which may have further sub-categories. 
 

3.1. Unique Device Fingerprinting 
 

Existing fingerprinting or identification of wireless devices is done though a range of methods 

[29] that have different benefits and drawbacks when it comes to simplicity, computation, 
reliability, and required hardware. These methods range from simple addresses and cryptographic 
techniques to the analysis of signal properties. 
 
The simplest method is for a sender to attach an identifier to their message. This is common 
across many types of networks and at different network layers. For example, TCP/IP uses IP 
addresses, and IEEE 802 uses MAC addresses. The downside is that an attached identifier can 

easily be spoofed or modified to achieve various goals. Cryptography can be used to supplement 
this approach by providing authentication when a device claims to have a particular identity. 
However, using cryptography leads to some issues, including initial key sharing and key 
revocation problems and cryptography being computationally expensive for low powered 
devices. 
 
With access to a network, it has been shown that profiling the network traffic can be used to 

uniquely identify devices [9, 22]. While this may allow us to determine the software and 
operating system running on the device, it does not necessarily narrow the device down to one 
particular model. Also, an adversary can easily spoof this as network traffic is controlled by 
software that can be easily modified. 
 
Unique device fingerprinting can fall into two categories at the PHY layer: 1) location-
independent and 2) location-depended identity. 
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Location-independent techniques use radiometric properties of a signal for unique device 
fingerprinting. Radiometric fingerprinting methods can be broadly placed into three categories 
[11]: transient-based [12, 26], modulation-based [5, 23], and spectral-based techniques [3, 20]. 
These techniques have a very high accuracy rate, ranging from 70% to 99%, but the drawback of 

these methods is that they are difficult to deploy and need specialist hardware. 
 
Location-dependent identity methods use a property where the location of a device produces 
some measurable change of that property. Existing work using received signal strength (RSS) [8, 
6] and channel state information (CSI) [16, 17] has focused on using location as a proxy for 
identity. Using these methods, spatially distanced entities that claim to be the same entity can be 
distinguished. The downside of this method is that devices (or at least the genuine device in the 
case of an intruder detection system) must be static. 

 
In order to use location-dependent properties (i.e. RSS or CSI) more generally on mobile devices, 
the location as a proxy for identity element must be removed. One such method proposed by Hua 
et al. [13] uses CSI data to infer the carrier frequency offsets (CFO), which arise due to 
fundamental physical properties of the device, which remains fairly consistent over time but 
differs significantly depending on the device. However, like many of these fingerprinting 
methods, the property is not inherent to a particular device type. To later determine the type, an 

enrolment step must first be performed. 
 
Higher-level fingerprinting techniques have the advantage that they are easier to deploy as the 
data required is more accessible at the application layer of devices. Fingerprinting particular 
sensors onboard a device, e.g., the microphone or camera, is possible because applications 
running on a device can directly access the data feed from the sensors, and some sensors display 
unique characteristics even across devices of the same type [2]. The sensors can also be used to 

measure the properties of the device themselves. Perez et al. [24] demonstrated that the 
electromagnetic emissions of a smartphone can be measured onboard using the device's 
magnetometer or remotely and then be used to fingerprint the device providing 98.9% accuracy. 
However, with direct access to the application layer of smartphones, it is already possible to 
directly retrieve some identifiable information already, such as the manufacturer and model. 
 

3.2. Device Type Fingerprinting 
 

Device type fingerprinting aims to classify devices based on their hardware or software. This can 
be achieved by manipulating the preamble of packets to see how a receiver handles non-standard 
or malformed packets, for example, whether it drops the packet. Bratus et al. [4] demonstrated the 
feasibility for access point (AP) fingerprinting, and Ramsey et al. [25] showed a 99% accuracy 
when using this method to classify eight transceiver types. A different method by Gao et al. [15] 
classifies APs based on the time shift of a `packet train' when it is received and sent out by the 

AP. Although these methods have the advantage of being invariant with respect to the 
environment, they limit the number of possible unique fingerprints to the number of vendor 
implementations. For example, if Apple decided to use the same chips over their whole product 
range, the model would be indistinguishable if these methods were applied to smartphones. 
 
We focus on using RSS for device fingerprinting because it has the large advantage that it is 
widely accessible across a range of hardware, making it easy to use and process without complex 

modifications to hardware or software. The focus is on WiFi antennas versus other 
communication technologies (e.g., Bluetooth and Zigbee) due to the ubiquity across the whole 
range of consumer electronic devices (including all smartphone models and generations), 
frequency of data transmission by background applications, and high probability of being in an 
active state. 
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3.3. Radiation Patterns 
 

The work on using radiation patterns [7, 21] for improved localization supports the use of 

radiation patterns for device fingerprinting and model fingerprinting. Coca and Valentin [7] 
explored the impact of radiation patterns on range-based localization schemes. They found that 
devices exhibited their own subtle unique patterns, even among the same make and model 
devices. While Coca proposed additional onboard compasses and a calibration certificate for 
Wireless Sensor Network nodes, we think this can be leveraged for device fingerprinting. Mwila 
et al. [21] presented a Gauss-Newton approach to optimize localization. This approach also relies 
on knowing the orientation of the various entities and therefore relies on cooperation between the 

infrastructure and device to localize. We do not use this technique because applying it directly to 
our work is more challenging as there are more unknowns, making the optimization problem 
significantly harder. 
 
For a device, such as a smartphone, the uneven distribution of energy may be caused by several 
factors, including the antenna pattern of the antenna itself [1] and the structure of the components 
packaged within the device causing reflection, diffraction, and attenuation. From now on, we use 

the term radiation pattern as we refer to the pattern produced by the device as a whole, not just 
the antenna. 
 

4. SYSTEM AND ATTACKER MODEL 
 

We consider a scenario based on a hybrid `bring your own device' to work and company-issued 
device environment. Some devices like desktops are company-issued, but most employees also 
bring in their personal smartphones. These devices are allowed to connect to the network, so they 
have Internet access away from their desks. However, the company has a policy that requires 
employees to keep software up-to-date if they want to use their personal devices. To enforce this, 
the company bans smartphones that cannot get the latest iOS and Android security updates, 

effectively banning some old models and some manufactures entirely. If a device not on the 

allowed list ℒ is detected on the network, then it can be investigated further by other means.  
 

4.1. System Model 
 

The fingerprinting system is deployed in the area of interest 𝒜. A set of receivers are in fixed 
positions around the environment. These sniff all network traffic on the network channel and they 
record the sender MAC address, received signal strength, and a packet identifier (e.g. a hash of 
the encrypted packet). The records are then sent to a central calculation server (CS) through 
wired connections. The packets are linked to a device using the MAC address, which we assume 

does not change while in use. Any attempt to modify the MAC address would cause 
communication problems at the network layer rendering an attack on identity pointless in this 
case. The multiple RSS measurements at the different receivers are linked together by the 
encrypted packet hash. CS knows the position of each receiver, has an RSS map of the 
environment, and has access to a public database of patterns, so enrolment of every device model 

is not required. However, an allowed model list ℒ is maintained and only devices that are allowed 
on the network are listed. The CS performs the fingerprinting process we later discuss in Section 
6, and the model with the closest match to a set of reference patterns will be found, and if a 

device fails to match a device fromℒ, it will be flagged for further investigation. 
 

For the purpose of later descriptions, every transmitter and receiver has an 𝑥, 𝑦, and 𝑧 position 

and each entity also has an orientation. Rotation is possible around the 3 axis azimuth ϕ (z-axis), 

pitch θ (x-axis), and roll ψ (y-axis). 
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The system has the following guarantees: 1) after a coverage metric 𝑐 has been reached, a device 

will be flagged if it is classified as a device not in ℒ for a set amount of time 𝑡 (𝑐 and 𝑡 are 
tuneable parameters); 2) if there is insufficient data to determine the model of the device, i.e. to 
many packets have been dropped (discussed in Section 6.1) or there is insufficient pattern 
coverage (discussed in Section 6.2), it will also be flagged. 
 

4.2. Attacker Model 
 

The attacker's goal is to access the network with a smartphone not in ℒ and continue to use the 
network without being flagged. To achieve this, an adversary must trick the system into believing 

that the device not on the allowed list is one of the device models on the allowed list.  
 
We make the following assumptions about the attacker's capabilities: the adversary is allowed 

A1) to choose any device on the not allowed list; A2) use the device in any location within𝒜; 
A3) full knowledge of how the system works; A4) access to the database of receiver positions 
and public database of patterns; A5) to make correct estimates of the RSS map for the 
environment; A6) to make external modifications to their device to modify the pattern using 
blocking materials placed externally onto the device (this includes a conventional off-the-shelf 
phone cover or custom made blocking materials). 

 
The adversary may not N1) modify or prevent communications between the receivers and CS; 
N2) modify the hardware or software on the receivers or CS; N3) modify data in any of the 
databases used by CS; N4) interfere with the site survey phase; N5) modify the internals of their 
device or the operating system; N6) move objects in the environment to cause slow-fading in 
select directions at a distance; N7) perform beamforming to attack; N8) use multiple 
smartphones; N9) change their pattern once beginning their attack, as this would require them to 
re-measure their pattern after each change; N10) we must also make the assumption that if two 

models have the same pattern but are forced to run different software (i.e. the devices have the 
same hardware but for whatever reason one model cannot use the latest security updates), then 
they are both placed on the banned list. 
 

5. CHALLENGES 
 

Several challenges make the process of fingerprinting using radiation patterns difficult to perform 
in practice: 
 
Measuring directivity at a distance. The core of this approach is being able to measure the 

directivity of a transmitter at a distance. This is not a value that can be measured on its own. 
Instead, it must be calculated by comparing the RSS measurements to samples measured for a 
reference transmitter with a known directivity. This is discussed in more detail in Section 6. 
 
Resolving low resolution data. Ideally, RSS measurements would be taken using a huge number 
of receivers (i.e., hundreds) from different directions. This would give extensive coverage of the 
radiation pattern, which would give many points on the pattern to match and potentially, a 

machine learning approach could be taken to classify the devices. In reality, there would be a 
much smaller number of receivers, and with a small number of receivers, a close match for 
several reference patterns may be found for some orientation. Therefore, measurements need to 
be made for many packets over time as the device moves through the environment. This should 
then expose different parts of the radiation pattern to the receivers and give larger pattern 
coverage. 
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Temporary slow-fading and fast-fading. Objects moving around the environment may have a 
temporary effect on the received power from particular locations. By taking measurements from 
many packets, any temporary objects causing slow-fading will only temporarily affect a small 
number of measurements. Using many packets will also reduce the impact of fast-fading. 

 

6. MODEL FINGERPRINTING METHOD 
 

We will initially discuss the process at a high level to give an intuition of the process before 
going deeper into the details of each step. 
 
Suppose the directivity is known for some directions from a device. In that case, this is matched 
to a known pattern by finding the pattern and orientation that has the smallest error to determine 
the model of the device, as shown in Figure 1. In this example, with the 4 data points, there is 
only one possible pattern it matches. However, calculating the directivity values from RSS 
measurements is the more complex part of the process. A set of receivers are used to measure 

RSS samples from a series of packets to achieve this. The RSS value measured by each receiver 
is a combination of many factors, including the device's directivity in the direction towards the 
receiver. It is impossible to calculate the directivity from a single measured RSS value as the 
device could be at any range, orientation, transmission power, and have any pattern shape. 
However, by combining multiple RSS measurements from multiple receivers, different candidate 
positions, orientations, and pattern shapes can be tested to minimise the RSS error from the 
expected values to estimate the most likely values for position and orientation for each candidate 

pattern. With an estimate for these values, there is enough information to estimate the directivity 
in the direction from the transmitter to each receiver by comparing the measurements to 
measurements previously collection from a reference transmitter with known directivity in the 
same environment. This is discussed further in Section 6.1. 
 

 
 

Figure 1. Diagram showing directivity measurements from an unknown device being matched to a known 

pattern. The patterns are shown in 2D relative to a black circle of 0dBi, representing a theoretical isotropic 

radiator. The largest and smallest directivity are also labelled. 

 

To rebuild the shape of a pattern, RSS samples need to be collected for multiple packets as the 
device moves to increase the pattern coverage. The device is classified as the pattern with the 
lowest overall error. A series of packets and substantial pattern coverage is required to increase 
accuracy by reducing the impact of fast-fading and temporary slow-fading, ensuring important 

pattern artefacts are not missing from the inferred pattern, and increasing the difficulty of attacks. 
Therefore, classification will become more accurate with larger numbers of packets. The 
confidence of the classification result can be quantified by measuring the pattern coverage of all 
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the possible patterns, and this coverage can be represented as a coverage metric. Classification is 
discussed further in Section 6.2. 
 
Before identification can be performed, there are some preliminary tasks that must be conducted: 

Firstly, the pattern of all the devices one may wish to identify must be enrolled (This first part of 
this step can be skipped if the operator has access to a public database of patterns). These patterns 
are called the reference patterns and are measured by rotating the devices around two axes at set 
increments at a fixed distance from a receiver to collect samples at all directions from the device. 
This measures the signal strength at different azimuths and elevations. The receiver must be in 
the far-field region of the transmitter to ensure the pattern has fully formed. During this phase, 
the reference transmitter pattern must also be enrolled. We will explain the purpose of the 
reference transmitter shortly. Although it has an omnidirectional pattern measuring the reference 

transmitter's pattern is an important calibration step because the directivity is only constant in one 
plane. The directivity is calculated using the measured RSS samples to create the pattern. 

Equation (1) is used to calculate the directivity. To calculate Prad, a polynomial equation is fitted 
to the collected RSS data, and then the integration step is performed on this equation. We found 
that for 2D patterns, the number of coefficients required for a good fit varied between 20 and 45 
depending on the pattern. 
 
Secondly, a site survey must be performed using the reference transmitter that has a known 
pattern and orientation. RSS samples are collected from many points around the environment to 

form a power map in a similar way to many existing fingerprint-based localization schemes [18, 
28]. The RSS map is built by placing the reference transmitter at different positions throughout 

the environment (the transmitter is placed at a fixed orientation α) and measuring the RSS at each 
receiver. For each location there is now a set of RSS values with 1 value for each receiver that is 
in range {P0ref , … , Pnref}.  

 
Now that the preliminary tasks have been completed, we come to the actual identification. A 

device enters the area of operation 𝒜 of the fingerprinting system. The aim is to classify it as one 
of the reference patterns. To match a device to a reference pattern, the directivity must be 
measured remotely and then the best matching reference pattern must be determined. 
 

The number of receivers is variable and there is a trade-off of several factors including cost of 
hardware deployment, computational cost, number of packets required for accurate classification. 

At least 𝑛 receivers are required to detect a packet for the calculations to proceed with that 
packet, with 𝑛 being a configurable value. Enforcing a minimum 𝑛 ensures that the number of 
receivers required to have a high classification accuracy is maintained. Depending on the receiver 

deployment, 𝑛 may be smaller than the total number of receivers deployed. This is necessary if 
the area of operation is large and some areas would be out of range of some receivers. 

Throughout the remainder of the explanation, we use 4 receivers as an example and consider the 
2-dimensional case for simplicity. For the 3D case, an extra component is added to any pattern 
access, and there are more possible orientations to consider. 
 
The method is broken down into two parts: firstly, for every packet that is received, the RSS data 
measured by the receivers is processed to calculate the directivity, this is explained in Section 
6.1; and secondly, at any time classification may be performed to find the best match along with a 

coverage metric 𝑐, explained in Section 6.2. 
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6.1. Remotely Measure Directivity 
 

RSS values are measured for a packet recorded by each receiver to giveM = {P0, … , Pn}. If less 

than 𝑛 receivers receive the packet, the packet is dropped, but the packet still counts towards the 

number of packets used to calculate 𝑐. 
 
For each possible reference pattern–which we refer to as the candidate reference patterns as we 
do not yet know which reference pattern is correct–the location and orientation with the best 
match to the measured data is found using the method we now describe. 

 

We model RSS as a combination of transmission power (Tpx), the directivity of the transmitter 

(Dt), the directivity of the receiver, slow-fading caused by the environment, path loss, and the 
effects of fast-fading [10, 27]. The impact of fast-fading is reduced by repeating this process for 

many packets, so we do not include this in our model equations. We assume that the slow-fading 
effects of the environment, path loss, and directivity of the receiver are constant from the same 
transmission location. Therefore, we simplify this by combining these constant values into the 

single constant 𝐸. 
 

 𝑅𝑆𝑆 = 𝑇𝑝𝑥 + 𝐷𝑡 +𝐸 (5) 

 

(5) is rearranged to separate the constant 𝐸. 
 

 𝐸 = 𝑅𝑆𝑆 − 𝑇𝑝𝑥 − 𝐷𝑡 (6) 

 

Using (6), we can now compare different transmitters at a single location as the 𝐸 from (6) will 
be the equal for both the correct reference pattern and the reference transmitter if the location is 
correct.  
 
The values for the reference transmitter and each candidate reference pattern are substituted in to 

(6) so there is a system of 𝑛 equations, one equation for each receiver, in the form: 
 

 𝐿𝑛𝑟𝑒𝑓 − 𝑇𝑝𝑥𝑟𝑒𝑓 − 𝐷𝑟𝑒𝑓 = 𝑀𝑛 − 𝑇𝑝𝑥 −𝐷𝑡  (7) 

 
On the left-hand side of (7) there are the values for the reference transmitter, and on the right-
hand side, there are the values for the candidate reference pattern. The sides are both equal 
because if they are at the same location, the environmental effects are also the same. Looking at 

each variable of (7) individually: Lnref is the power received by the receiver 𝑛 from the reference 

transmitter at location 𝐿, the reference transmitter transmission power Tpxref , the directivity of the 

reference transmitter in the direction of the receiver Dref, Mn is the actual RSS measured from 

the device to be identified by the receiver 𝑛,Tpx the transmission power of the device 

corresponding to the candidate reference pattern, and Dt the directivity of the candidate reference 

pattern in the direction of receiver 𝑛. 
 

To find the values Dref and Dt we must fetch patternref[α
′] and patterncandidate[ϕ

′] 
respectively which are the directivity values from the patterns measured in phase 1. To calculate 

relative angles α′ and ϕ′ from the position of the various entities and the rotation values α and ϕ 
of the transmitters, the dot product of the transmitters rotation matrix and vector defining the 
relative position of the receiver and transmitter is calculated. The relative angle is then calculated 
between the two entities, converting from Cartesian coordinates to polar coordinates. In 2D 

space, these several steps are shown in the following equation for ϕ′: 
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 ϕ′ = 𝑎𝑡𝑎𝑛2(sinϕ ⋅ (𝑅𝑥 − 𝑇𝑥) + cosϕ ⋅ (𝑅𝑦 − 𝑇𝑦), cosϕ ⋅ (𝑅𝑥 −𝑇𝑥) − sinϕ

⋅ (𝑅𝑦 −𝑇𝑦)) 

(8) 

 

(8) is the equation also used to calculate α′. Calculating the relative angles is more complex for 
3D environments and radiation patterns as we must consider the rotation of the transmitter around 

3 axes. However, this can be achieved relatively easily using the same method by adding an 𝑧 
component to the position vector and two additional rotation matrices for rotation around all 3 
axes. 
 
Using equation (7), the minimum squared difference between the two sides based on the RSS 
samples must be found to identify the closest location and orientation for each reference pattern. 
From the set of possible locations and orientations, the minimum value is found to determine 

location 𝐿 and orientation ϕ: 
 

 
argmin

𝐿∈𝑠𝑎𝑚𝑝𝑙𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠,𝜙∈[−𝜋,𝜋]
(∑((𝐿𝑛𝑟𝑒𝑓 − 𝑇𝑝𝑥𝑟𝑒𝑓 − 𝐷𝑟𝑒𝑓)

𝑅

𝑛=0

− (𝑀𝑛 − 𝑇𝑝𝑥 − 𝐷𝑡))
2

) 

(9) 

 

The values within the sum correspond to the values from (7). Mn is the actual measured RSS 

value for receiver 𝑛; Tpx is the transmission power of the device corresponding to the reference 

pattern; Dt is the directivity from the reference pattern or more precisely patterncandidate[ϕ
′], 

where ϕ′ is the relative angle to the receiver from the candidate location with a candidate rotation 
of ϕ; Lnref is the RSS value measured from the reference transmitter during the site survey by 

receiver 𝑛; Tpxref  is the transmission power of the reference transmitter; and Dref is the directivity 

of the reference transmitter or more precisely patternref[α
′], where α′ is the relative angle to the 

receiver when the site survey was performed.  
 

Using the minimum value from (9), the location 𝐿 and orientation ϕ of the best match has now 
been estimated for each reference pattern. For each reference pattern, the process is now reversed 
to estimate the measured Directivity in the direction of each receiver. 

 
 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑀𝑛 + 𝑇𝑝𝑥𝑟𝑒𝑓 +𝐷𝑟𝑒𝑓 − 𝑇𝑝𝑥 −𝐿𝑛𝑟𝑒𝑓  (10) 

 

The (measured Directivity, azimuth) pair for each data point is calculated and stored for each 
reference pattern, where the azimuth is the direction to the receiver in the device's reference 
frame. If overlaid on the reference pattern database in 2D it may look something like Figure 2(a) 
with the red dots marking the measuredDirectivity values. In addition, the location and 
orientation can also be saved so the estimated movement can later be viewed for each possible 
pattern if desired. To be clear, the best matching location and orientation are found individually 
for each reference pattern, and therefore, the measuredDirectivity is calculated individually for 
each reference pattern. This can be seen in the Figure 2(a) example as the angles between the red 

dots on each pattern are different. 
 
As previously stated, this process is performed on a series of packets to find the best reference 
pattern match later, so this process needs to be repeated for every received packet. As more 
packet samples are collected, the result will look more like Figure 2(b). 
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6.2. Classification 

 

The identity is then resolved by finding the reference pattern with the closest match to the 
calculated measuredDirectivity data. This is performed by calculating the squared sum of the 
difference between the reference pattern directivity and the measured Directivity values. The 
reference pattern with the lowest average difference between the measured values and the actual 
pattern is the estimated device model. 

 
To account for fast-fading and temporary slow-fading effects, this should only be performed 
when a sufficient number of measured points are taken. Ideally, the device should also have some 
movement during the collection time to expose more pattern segments to the receivers. As the 
location and orientation output correctness is not guaranteed, it is not possible to use these values 
to enforce movement, which is crucial for increasing the accuracy and, as discussed later on, 
preventing attacks on the system. However, if we look at each of the reference patterns and see 
that they all have significant coverage of the entire pattern, we can be confident that the 

transmitter has exposed a significant proportion of its pattern to various receivers. Therefore, a 

coverage metric 𝑐 is used to give some indication of the confidence of the classification. 
 

 
(a) (b) 

Figure 2. Examples of reference patterns database overlaid with (a) first set of measuredDirectivity data 

calculated after 1 packet and (b) after 40 packets with movement of the transmitter. The coloured lines 

show the whole pattern, and the red dots mark the measuredDirectivity values. Measurements are shown on 
a dBi scale. 

 

To calculate the coverage metric 𝑐 for any instance of classification, each reference pattern is 

split up into equal wedges with an angle of Ω, as shown in Figure 3, and the smallest value ofΩ is 

found that ensures that there are at least 𝑤% of data points in every wedge for all the reference 

patterns–we refer to 𝑤% as the wedge requirement and it is a tuneable parameter. For ease of 

comparison, Ω is normalised to between 0 and 1 and inverted so that a higher value indicates 
higher coverage, with 1 showing there is complete coverage with the wedges as small as the 

resolution of the pattern and 0 indicating that the coverage requirement is only met if Ω is 360°. 
It is important to note that if the operator is not careful, the coverage metric begins to break down 

past a certain point. For example, if the wedge requirement 𝑤 is 1% then it is impossible to meet 
the wedge requirement if patterns are split into more than 100 wedges. The relationship between 
this coverage metric and classification accuracy is discussed further and evaluated in Section 7.3. 
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Figure 3. Radiation pattern sphere or circle sliced into wedges of Ω 

 

The operator can use 𝑐 in a variety of ways. For example, suppose a device cannot attain a 
threshold 𝑐 after a set amount of time. In that case, the classification can be set to fail. 
Alternatively, the system can be configured only to accept classification results above the 

threshold. 
 

6.3. Optimisations 

 

This technique relies on an exhaustive search of the possible patterns, locations, and orientations, 
so optimisations are essential.  
 

Firstly, the values for ϕ′ and α′ for each combination of location and orientation can be pre-
calculated, so no matrix or trigonometric functions need to be computed at run time.  
 
Secondly, a pattern can be stored in the form of a polynomial equation or as an array. Although 
storing a pattern as an equation saves some storage space, it comes at a high computational cost. 

Fetching a single directivity value requires calculating many exponents for the equation versus 
fetching a single array value. Storing patterns as arrays has a far lower computational cost, and 
the directivity value can be fetched using the azimuth and elevation as indexes.  
 
Thirdly, during classification, the number of records to be stored for each device to be identified 

is approximately nReceivers × nPackets × nReferencePatterns. 
 
With a huge number of reference patterns and/or devices to be identified, the data to be stored 
may grow to an unmanageable amount. To resolve this, once a storage size limit set by the 
operator is reached, the data from the bottom half of the matching patterns are deleted, and those 

reference patterns are no longer considered. Not only does this reduce the storage requirements, 
but it also reduces the computational cost of checking each reference pattern. 
 
Fourthly, further processing time optimisations can be performed to reduce the number of 
locations to check, which may be expensive for large numbers of locations from the site survey 
and reference patterns. The computational requirements can be reduced in two ways 1) for the 

first 𝑖 samples, the rough area can be calculated using a non-linear least squares optimiser for 
which it is assumed all patterns are isotropic and only the region with a high probability of being 

the locations with this less accurate method is searched thoroughly; and 2) after the first 𝑖 
samples a movement speed constraint can be added to prevent unnecessary checking of some 
locations that would be impossible to reach (e.g., locations more than 10m/s distance away from 
the previous packet can be discounted in the case of limited human movement). 
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7. EVALUATION 
 

We evaluate our proposed method using radiation patterns collected from actual smartphones–we 
discuss the pattern collection further in Section 8–and simulations to explore the relationship 
between classification accuracy and several factors, including the number of packets, pattern 
fidelity, number of receivers, and our coverage metric. 
 

For each of our simulations, we simulated 20m by 20m environments with receivers placed 
around the perimeter. We generated the simulated site survey data with 1m spacings between 
each survey point. A device to identify was then moved through the environment, and RSS 
samples were calculated, and random Gaussian noise with a standard deviation of 1.5dBm was 
added. The classification was then performed, and the results were outputted. 7 reference patterns 
collected from real devices as is discussed in Section 8.4 were used, this included the 2 modified 
patterns from the iPhone 6S, and only 1 pattern was used when there were multiple devices of the 
same make and model. 

 
For the initial simulations, a device to simulate is selected from the list of reference patterns, and 
the success rate of classification is measured. Each simulation consisted of 50 runs, and the 
output plots we present show the mean result for the 50 runs with binomial proportion 95% 
confidence intervals marked for the success rate data. For each simulation, 200 sets of simulated 
RSS samples were used. Given that this is used for identity verification, we also tested it as a 
binary classifier and plotted the true positive rate (TPR) and false positive rate (FPR) on a 

receiver operating characteristic (ROC) curve for various coverage metrics 𝑐. Again, this used 
simulations with 200 sets of RSS data, but 420 runs of the simulation were performed. 

 

 
(a) (b) 

Figure 4. Success rate of classification using different (a) numbers of receivers and (b) pattern resolutions 

(i.e., the angle step between measurements) over 50 simulation runs with 95% confidence intervals marked. 

 

7.1. Pattern Fidelity 

 

The resolution of the pattern measurements impacts classification accuracy, as with more 

measurement points of the pattern, the pattern is of higher fidelity. With a lower pattern 
resolution, essential portions of patterns may be missed. This has the impact of significantly 
reducing the accuracy of classification. To demonstrate this, we performed simulations using 
various resolutions. We removed data between resolution steps and rounded the azimuth 
calculations to the nearest step to create the different fidelity patterns. The results in figure 4(a) 
show a significant increase in the number of packets required for accurate classification followed 
by degradation in classification accuracy as the resolution was reduced. 
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7.2. Number of Receivers 

 

To demonstrate the relationship between the number of packets and the success rate of 
classification for different numbers of receivers, we varied the number of receivers in our 
simulations. The results are shown in figure 4(b) and–as expected–with 2 receivers, the success 
rate is significantly lower than with a larger number of receivers. For 3 receivers and above, the 

graph also shows that more receivers require fewer packets to achieve a higher success rate. 
 

7.3. Coverage Metric 

 
As already stated, exposing a greater proportion of the pattern is essential for increasing 
accuracy. However, there is no guarantee of movement or rotation, which is how greater pattern 

coverage is achieved. The coverage metric 𝑐 is calculated for this reason, which is an indication 
of how much of the transmitter's pattern has been covered by the directivity measurements. 

Ideally, a high 𝑐 would imply a high classification accuracy. That way, after any classification 
instance, one would have an estimated device identity and an indication of the likelihood of this 
being correct. 
 
To demonstrate this increase in classification accuracy, simulations were performed. In each of 
the simulations, after every packet, classification was performed. This allowed the TPR and FPR 
to be recorded along with the coverage metric of that classification instance. The results of this 

are shown in Figure 5. The results demonstrate that as the coverage metric increases, the 
performance of the classifier improves. From this, we can conclude that with a higher coverage 
metric, we can be more confident in the accuracy of the classification. 

 
 

Figure 5. ROC curve of the classifier using a wedge requirement of 1%. Each line shows the curve for 

different output coverage metrics 𝑐. 

 

8. SMARTPHONE PATTERN UNIQUENESS 
 

To use WiFi radiation patterns for device type fingerprinting the patterns of each type must have 
the properties of 1) uniqueness and 2) repeatability. To explore these two properties in 
smartphone patterns we measured the pattern around 1 axis for 6 different smartphones. 
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8.1. Data Collection Framework 

 

We used Raspberry Pi Model 4 boards running Ubuntu 19.10 (GNU/Linux 5.3.0-1022-raspi2 
aarch64) as the platform for data collection. A USB external WiFi adapter with the Mediatek 
7601u chipset placed into monitor mode was used for collecting wireless packet information, 
including sender MAC address and RSS. A separate Raspberry Pi controls a stepper motor that 

was used to rotate the phone 1º per second at a distance of 4m from the receiver. The transmitting 
device being measured is configured to transmit a packet approximately every 100ms. The 
Raspberry Pi clocks were synchronised to within 500ms and each packet received is matched to a 
rotation value by closest time. Therefore, the difference between the actual rotation value when 

the packet is transmitted and the measured rotation value should be ±1° providing a pattern 
resolution of 1º.To prevent interference from other devices a wireless router was used to setup a 
network using a channel that did not overlap with any other surrounding networks. The MAC 
address of the device being measured was used to filter out packets from devices related to the 
data collection setup and rogue devices (e.g. probe requests). 
 

The pattern in the horizontal plane with the device flat on its back was measured for 6 devices: 1) 
a Samsung Galaxy A50, 2) an iPhone X, 3) an iPhone 6S, 4) an iPhone 5S, 5) a Motorola Moto 
E3, and 6) another Motorola Moto E3. 
 

8.2. Pattern Correlation 

 

Firstly, we found that repeat pattern measurements collected on different days from a single 
device visually match and have a high linear correlation, as shown in Figure 6. Secondly, we 
found that devices of different models have a lower correlation. Each pattern was overlaid with 
one another and one was rotated in 1 degree increments while the normalised cross-correlation 

was calculated for each degree of rotation and the rotation that yielded the highest cross-
correlation was taken as the best match. Figure 7 shows the maximum normalised cross-
correlation between different pattern measurements of different devices. When multiple 
measurements of the pattern are made, the average maximum normalised cross-correlation of 
matching devices was 0.91. The average maximum for non-matching devices was 0.54.  
 
This demonstrates that there is pattern uniqueness between the devices we measured and 
repeatability across devices of the same make and model. 

 
 

Figure 6. The diagram shows repeated measurements of the radiation pattern from the same Samsung 
Galaxy A50. This demonstrates that repeated pattern measurements result in the same pattern. 
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Figure 7. Normalised cross-correlation of smartphone radiation patterns. Each box gives an average of the 
cross-correlation when comparing the corresponding device on the y-axis with the device on the x-axis. 

Each device had its pattern measured at different times and was compared to every other device. The boxes 

on the diagonal consist of 3 averaged values as we do not compare a measurement run to itself. All the 

other boxes are the average of 9 values (3x3 runs). 

 

8.3. Patterns from the Same Model 

 

Coca [7] discussed the potential for devices to have their own unique patterns when compared to 
devices of the same model. However, in our experiments, conducted in an office environment, 
the patterns for the two Moto E3 devices did not show a significant difference. The level of 

difference was very similar to that of the repeat measurements for the iPhone X and 6S, which is 
likely caused by the effects of fast fading. 
 
While our experiments for comparing two devices of the same model were limited, in that we 
only used two devices, the result shows that it is not always possible to uniquely distinguish 
devices of the same model based on the radiation pattern. However, it is possible that some 
models will exhibit larger differences across devices depending on other factors, such as 
manufacturing techniques and device construction. It is reasonable to expect devices that use an 

antenna that is part of an integrated circuit board or clamped to the chassis or other internal 
components would have very little manufacturing variations across devices. But in cases where a 
flexible wire that is not held into position is used, it is possible that patterns may vary across 
devices. The Samsung Galaxy A50, for example, uses a wire antenna for WiFi which is 
somewhat flexible as it is not clamped to the frame or circuitry.  
 

8.4. Pattern Modifications 

 

It is possible to modify a pattern using beamforming or by adjusting the device somehow, for 
example, adding additional material that will affect the energy distribution from the device. Only 

a tiny subset of current generation smartphones perform beamforming, so we do not consider this 
further. 
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Figure 8. Pattern plots of iPhone 6S. The first without any blockers. The second  

and third have different configurations of blockers made from foil. 

 

To explore how patterns can be modified we placed multiple layers of aluminium foil in two 
different configurations around the bottom end of an iPhone 6S. Figure 8 shows the pattern of the 
phone with different foil blocker configurations versus the unmodified pattern. Due to the 
complexity of modelling multipath fading effects, we would not expect the result to be as simple 
as reducing the gain in the direction of the blocker and an increasing gain proportionally in other 
directions. While noting we do not have the full picture, as the setup only measures power in one 
axis of rotation, as expected the blockers had some unpredictable effects on the pattern. Although 

at 180º–which was in the direction of the blocker–the gain was reduced, in other directions the 
increase is less clear. From 270º to 360º the results show an increase in gain with the blockers, 
but not by the same ratio and the alignment of peaks and troughs has changed. The other parts of 
the pattern have changed in an unpredictable way. 
 

8.5. The Environment and Limitations of this Method 

 

As with all schemes that utilise RSS, the environment plays a significant role and although we 

assume that the environment remains static using a constant 𝐸 value, this will be affected by 
moving objects, such as people, doors, and furniture. As already mentioned, temporary changes 
are dealt with as the process is performed for many packets so the environment should return to 
its original state for some packets. In the case of long duration changes the site survey can be 
conducted with multiple states (e.g., with a door open), but the survey cannot be conducted with 

every possible state due to the state space explosion problem. However, multiple state surveys 
should be conducted when appropriate. Importantly, the movement of objects will have a limited 
impact to the RSS measurements in comparison to the pattern of the device which can cause 
differences of 14+ dBm.The limitation of this work is that in some settings, this assumption that 
the environment will return to the original site survey state may not apply. 
 

9. SECURITY ANALYSIS 
 
The adversary aims to break the fingerprinting mechanism, such that the system believes a 

smartphone that is not in ℒ is a device in ℒ.Although the scheme produces quite a good location 
and orientation estimate as a by-product, we make no guarantees about those, so this is not 
considered in this analysis. For an attack to succeed, the attacker must find or produce a pattern 

that matches 𝑛 points on a pattern from an allowed model where 𝑛 is equal to the number of 
receivers. The angles between the matches in the pattern must correspond to a location in the 
environment where the angles to the receivers can be replicated. This must be done at multiple 
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orientations and/or locations so the calculated points meet the pattern coverage requirement for 
each reference pattern. 
 

9.1. Misclassification Attack 
 

In the simplest form of attack, an attacker would try to orient himself such that his transmissions 
would be mistaken for transmissions from a valid device. To do this, the attacker must find 
patterns with similarities and exploit those similarities. Although devices have significantly 
different patterns, as shown in Figure 7, there are overlaps in the patterns. These overlaps can be 
found easily, as shown in Figure 9, to make a pattern indistinguishable from another. The number 

of points of overlap between two patterns is the upper bound for the number of receivers that an 
attacker can trick the system into thinking one pattern is the other with a single packet. For 
example, the Samsung A50 and iPhone 6S have up to 12 points of overlap in 2D; in 3D, there 
would be lines of overlap with the full pattern. The attacker may need to consider the difference 
in transmission power of the devices, but this would have a limited change on the number of 
overlaps. Using the total number of points of overlap is the best-case scenario for the attacker and 
requires the reasonably strong assumption that the attacker has complete control over the angles 

from the transmitter to the receivers. In practice, an attacker does not control the position of the 
receivers as these are fixed and thus has limited control over the required angle between matching 
points on the pattern. 
 
A more realistic approach to consider the attacker's capabilities is to present the attacker with a 
range of environments with different layouts of receivers and determine if the attacker can create 
a match with a different pattern at multiple locations that satisfies the required angles to the 

receivers, with some flexibility (e.g. ±1dBm). As the number of receivers increases, the more 
difficult it is for an attacker to find patterns that match at the required angles. As expected, for a 

simulated 𝒜 layout, we found that for 2 receivers, 539 combinations of positions and orientations 
matched for the Samsung A50 and Moto E3, 21 matches for 3 receivers, and 4 & 5 receivers 
resulted in 0 matches. The number of matches will vary depending on the layout and patterns 

used. However, critically, this type of attack can be effectively mitigated, as the overlaps can be 
pre-calculated before system deployment. The receivers can be positioned to prevent possible 
overlaps of patterns that would otherwise make the scheme susceptible to attacks. First, the 
angles between matches for allowed and banned patterns need to be calculated. Then a layout of 
receivers needs to be found that prevents any location within the environment from achieving 
those angles to the receivers. As more devices are added to the pattern database, the calculations 
may need to be rerun and receivers potentially moved. 
 

Additionally, although the attacker can match an allowed device, the weakness with this attack is 
that the system will still recognise the banned device as a strong match. If the system returned the 
incorrect but allowed device on the first attack attempt, on subsequent checks, it may not. In 
addition, by forcing the attacker to achieve a high pattern coverage, they must find multiple 
combinations of points of overlap at the required angles, and the probability of remaining 
indistinguishable from another pattern reduces as each wedge is covered. The situation is even 
more hopeless for the attacker if the location of some, or all, of the receivers is unknown. 
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Figure 9. Example of an attacker finding matches that line up with 3 receivers. For a fixed transmission 

power, the overlap of directivity values will produce the same RSS values at the receivers, making the 

patterns indistinguishable from the perspective of the receivers. 

 

9.2. Pattern Modification Attack 
 

As described above, carefully crafting a situation where a device is misclassified is very difficult. 
Even if the attacker happens to succeed once, the attacker's actual pattern is still a strong match. 
To improve his chances, the attacker could modify his pattern to match an allowed pattern 
closely. However, as shown in Section 8.4, modifying a pattern by adding external blockers in a 

controlled way is difficult. This makes modifying a banned pattern to closely match an allowed 
pattern improbable.  
 
An alternative way for the attacker to improve his chances is, somewhat counterintuitively, to 
modify the pattern, so that is it very different from any other pattern present in the database. 
Creating a new unique pattern with some overlap with existing patterns is not difficult. Once the 
attacker has created a new pattern, he can carry out attacks using the same methods discussed in 

the first attack. The greater the number of significant peaks and troughs, the easier it is for the 
attacker to maximise overlaps. 
 
Noting what has already been discussed regarding matching patterns, the probability of 
successful attacks is reduced if the attacker is forced to find multiple matches at different points 
on the pattern–the coverage requirement introduced by the coverage metric forces this. Without 
very similar patterns, the attacker will not find many parts of the pattern that match at the 

required angles as dictated by the receivers’ positions. The number of receivers 𝑛 and the 

threshold coverage metric 𝑐 the operator requires can be adjusted to prevent this attack because 
the attacker is subject to the following constraints: First, the pattern generated by the attacker 

must match an allowed device on at least 𝑛 points simultaneously; Second, the attacker is forced 
to move to multiple locations or use multiple orientations due to the coverage requirement, i.e., 

they must find multiple matches. The larger the required 𝑐, the more matches they must find. 
 

10. CONCLUSION 
 

In this paper, we have proposed a new method for fingerprinting different models of smartphones 
using differences in their radiation patterns. We showed how a small set of stationary receivers 
could measure the radiation pattern of a transmitting device in a completely passive manner. Our 
novel measurement and pattern recreation method can obtain the radiation pattern of nearby 

devices and compare them to a database of known device fingerprints. Based on this, the 
presence of rogue devices can be detected without requiring any special-purpose hardware or 
collaboration from the devices themselves. Finally, we discussed how the proposed scheme can 
be configured by adjusting the number of receivers, coverage requirements, and the number of 
packets between identification checks to mitigate different forms of attacks on the scheme. There 
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is further scope for future work to explore how different environments affect the performance of 
the system. 
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