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ABSTRACT 
 

Artificial neural networks (ANNs) are powerful methods for many hard problems (e.g. image 

classification or time series prediction). However, these models are often difficult to interpret. 
Layer-wise relevance propagation (LRP) is a widely used technique to understand how ANN 

models come to their conclusion and to understand what a model has learned. Here, we focus 

on Echo State Networks (ESNs) as a certain type of recurrent neural networks. ESNs are easy to 

train and only require a small number of trainable parameters. We show how LRP can be 

applied to ESNs to open the black-box. We also show an efficient way of how ESNs can be used 

for image classification: Our ESN model serves as a detector for El Niño Southern Oscillation 

(ENSO) from sea surface temperature anomalies. ENSO is a well-known problem. Here, we use 

this problem to demonstrate how LRP can significantly enhance the explainablility of ESNs. 
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1. INTRODUCTION 
 

Machine learning (ML) provides powerful techniques in the field of artificial intelligence (AI) to 
discover meaningful relationships in all kinds of data. Within machine learning, artificial neural 

networks (ANNs) in shallow and deep architectures are found to be promising and very versatile. 

While these models considerably push the state-of-the-art solutions of many hard problems, they 

tend to produce black-box results that are difficult to interpret even by ML experts. 
Consequently, the question of enhancing the explainability of complex models ("explainable AI" 

or "xAI") has gained a lot of attention in the AI/ML community and stimulated a large amount of 

fundamental research [1], [2]. 
 

In its basic form layers of perceptrons [3] are stacked on top of each other to create a multilayer 

perceptron (MLP) [4]. These models are usually trained using some form of stochastic gradient 

descent (SGD) [5]. The aim is to minimize some objective or loss function. More sophisticated 
architectures e.g. make use of convolutional neural networks (CNNs) [6] or long short term 

memory (LSTM) [7] units to have recurrence in time in so-called recurrent neural networks 

(RNNs). 
In this paper, we focus on geospatial data, which typically feature non-linear relationships among 

observations. In this szenario, ANNs are good candidate models, since ANNs are capable of 

handling complex and non-linear relations by learning from data and training some adjustable 
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weights and biases [8]. In recent years these methods have been used in various ways on 
geospatial data [9], [10], [11]. 

 

The problem with using ANNs on data of the Earth system is that we often only have relatively 

short time series to predict on or a small number of events to learn from. Using sophisticated 
neural networks encounters a large number of trainable parameters and these models are prone to 

overfitting. This requires a lot of expertise and effort to train these models and prevent them from 

getting stuck in local minima of the objective function. Famous techniques are dropout, early 
stopping and regularization [12], [13], [14]. 

 

In this work we overcome these problems by using Echo State Networks (ESNs) [15]. ESNs are a 
certain type of RNNs and have been widely used for time series forecasting [16], [17]. In its basic 

form an ESN consists of an input and an output layer. In between we find a reservoir of sparsely 

connected units. Weights and biases connecting inputs to reservoir units and internal reservoir 

weights and biases are randomly initialized. The input length determines the number of recurrent 
time steps inside the reservoir. We record the final reservoir states and only the output weights 

and bias are trained. But opposed to other types of neural networks, this does not encounter some 

gradient descent methods but is rather done in a closed-form manner by applying linear 
regression of final reservoir states onto desired target values to get the output weights and bias. 

This makes ESN models extremely powerful since they require only a very small number of 

trainable parameters (the output weights and bias). In addition to that, training an ESN is easy, 
fast and leads to stable and reproducible results. This makes them especially suitable for 

applications in the domain of climate and ocean research. 

 

But as long as ESNs remain black-boxes, there is only a low level of trust in the obtained results 
and using these kinds of models is likely to be rejected by domain experts. This can be overcome 

by adopting techniques from computer vision developed for image data to climate data. Layer-

wise relevance propagation (LRP) is a technique to trace the final prediction of a multilayered 
neural network back through its layers until reaching the input space [18], [19]. When applied to 

image classification, this reveals valuable insights in which input pixels have the highest 

relevance for the model to come to its conclusion. 

 
Toms, Barnes and Ebert-Uphoff have shown in their work [20] that LRP can be successfully 

applied to MLP used for classification of events related to some well-known Earth system 

variablity: El Niño Southern Oscillation (ENSO). 
 

This work is inspired by [20] and goes beyond their studies: We also pick the well-known ENSO 

problem [21]. ENSO is found to have some strong zonal structure: It comes with anomalies in the 
sea surface temperature (SST) in Tropical Pacific. This phenomenon is limited to a quite narrow 

range of latitude and some extended region in terms of longitude. We use ESN models for image 

classification on SST anomaly fields. We then open the black-box and apply LRP to ESN 

models, which has not been done before - to the best of our knowledge. 
 

SST anomaly fields used in this work are found to be noisy. For this reason, we focus on a special 

flavour of ESNs, that uses a leaky reservoir because they have been considered to be more 
powerful on noisy input data, compared to standard ESNs [22]. With the help of our LRP 

application to ESNs, we find the leak rate used in reservoir state transition to be a crucial 

parameter determining the memory of the reservoir. Leak rate needs to be chosen appropriately to 
enable ESN models to reach the desired high level of accuracy. 

 

Our models yield competitive results compared to linear regression and MLP used as baselines. 

However, ESN models require significantly less parameters and hence prevent our model from 
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overfitting. We even find our reservoirs to be robust against random permutation of input fields, 
destroying the zonal structure in the underlying ENSO anomalies. 

 

This opens the door to use ESNs on unsolved problems from the domain of climate and ocean 

science and apply further techniques of the toolbox of xAI [23]. 
 

The rest of this work is structured as follows: In Section 2 we briefly introduce basic ESNs and 

focus on reservoir state transition for leaky reservoirs. We then sketch an efficient way to use 
ESN models for image classification. Section 3 outlines the concept of LRP in general before we 

customize LRP for our base ESN models by unfolding the reservoir recurrence. The classification 

of ENSO patterns and the application of LRP to MLP and ESN models is presented in Section 4. 
Our models are not only found to be competitive classifiers but also reveal valuable insights in 

what the models have learned. We show robustness of our ESN model on randomly permuted 

input samples and visualize how the leak rate determines the reservoir memory. Discussion and 

conclusion are found in Section 5, followed by technical details on the used ESN and baseline 
models in the Appendix. 

 

2. ECHO STATE NETWORKS 
 
An ESN is a special type of RNNs and comes with a strong theoretical background [15], [24], 

[25]. ESN models have shown outstanding advantages over other types of RNNs that use gradient 

descent methods for training. We use in this work a shallow ESN architecture consisting of an 

input and output layer. In between we find a single reservoir of sparsely connected units. The 
weights connecting input layer and reservoir plus the input bias terms are randomly initialized 

and kept fixed afterwards. We find some recurrence within the reservoir and reservoir weights 

and biases are also randomly set and not trainable. Reservoir units are sparsely connected with 
sparsity usually in the range of 20-30%. Further constraints are put to the largest Eigenvalue of 

the reservoir weight matrix 𝑊𝑟𝑒𝑠. This is required for the reservoir to be stable and show the so-

called Echo State Property [26]. 

 
Only the output weights and bias are trained by solving a linear regression problem of final 

reservoir states onto desired target outputs. A sketch of a base ESN model is shown in Figure 1. 

 

 
 

Figure 1. Sketch of base ESN: An input and an output layer, in between we find the reservoir. 

 

In our ESN model, 𝑢(𝑡) ∈  ℝ𝐷×1 denotes input values at time 𝑡 with 𝐷 input features. Inputs are 

fed into the model for 𝑇 time steps, hence 𝑡 = 1. . 𝑇. Reservoir states at time 𝑡 = 1. . 𝑇 are 

denoted by 𝑥(𝑡) ∈  ℝ𝑁×1, final reservoir states are obtained as 𝑥(𝑇). The final model output 

𝑦(𝑇) ∈  ℝ𝑀×1 at time 𝑇 has 𝑀 output values. 
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We then find input weights 𝑊𝑖𝑛 ∈  ℝ𝑁×𝐷, connecting 𝐷 input units to 𝑁 reservoir units. 

Reservoir weights are given by 𝑊𝑟𝑒𝑠 ∈  ℝ𝑁×𝑁 and output weights connecting 𝑁 reservoir units to 

𝑀 output units read 𝑊𝑜𝑢𝑡 ∈  ℝ𝑀×𝑁. In addition to weight matrices, we have bias vectors 𝑏𝑖𝑛 ∈
 ℝ𝑁×1, 𝑏𝑟𝑒𝑠 ∈  ℝ𝑁×1 and 𝑏𝑜𝑢𝑡 ∈  ℝ𝑀×1 for input, reservoir and output units, respectively. 

 

We use a leaky reservoir with leak rate 𝛼 ∈  [0, 1], as discussed in [22]. Leak rate serves as 
smoothing constant. The larger the leak rate, the faster reservoir states react to new inputs. In 

other words, the leak rate can be understood as the inverse of the memory time scale of the ESN: 

The larger the leak rate, the faster the reservoir forgets previous time steps’ inputs. The reservoir 
state transition is defined by Equation 1. 

 

𝑥(𝑡) = (1 − 𝛼). 𝑥(𝑡 − 1) + 𝛼. 𝑎𝑐𝑡[𝑊𝑖𝑛𝑢(𝑡) + 𝑏𝑖𝑛  + 𝑊𝑟𝑒𝑠𝑥(𝑡 − 1) + 𝑏𝑟𝑒𝑠]          (1) 

 

Here 𝑎𝑐𝑡(. ) is some activation function, e.g. sigmoid or tanh. From the initial reservoir states 

𝑥(𝑡 = 1) we can then obtain further states 𝑥(𝑡) for 𝑡 = 2. . 𝑇 by keeping a fraction (1 − 𝛼) of the 

previous reservoir state 𝑥(𝑡 − 1). Current time step’s input 𝑊𝑖𝑛𝑢(𝑡) + 𝑏𝑖𝑛as well as recurrence 

inside the reservoir 𝑊𝑟𝑒𝑠𝑥(𝑡 − 1) + 𝑏𝑟𝑒𝑠 are added after applying some activation and 

multiplying with leak rate 𝛼. Reservoir states 𝑥(𝑡) are only defined for 𝑡 =  1. . 𝑇. This requires 

special treatment of 𝑥(𝑡 = 1) as outlined in Equation 2. 

 

𝑥(𝑡 = 1)  =  𝛼 𝑎𝑐𝑡[𝑊𝑖𝑛𝑢(𝑡) + 𝑏𝑖𝑛]          (2) 
 

The model output 𝑦(𝑇) is derived as linear combination of output weights 𝑊𝑜𝑢𝑡  and biases 𝑏𝑜𝑢𝑡  

with final reservoir states 𝑥(𝑇), as shown in Equation 3. 
 

𝑦(𝑇)  =  𝑊𝑜𝑢𝑡  𝑥(𝑇)  +  𝑏𝑜𝑢𝑡           (3) 

 

This is a linear problem that can be solved in a closed-form manner with multi-linear regression 
minimizing mean squared error to obtain trained output weights and biases. 

 

 
 

Figure 2. In the upper part we show a synthetic 2D input sample consisting of D input features and T time 

steps. Feeding the sample column by column into the base ESN model requires breaking the sample into 
columns. In the lower part we show inputs for the first four time steps. 

 

ESN models have been widely used for time series forecasting [16], [17]. The idea is to feed a 

single signal or multiple time series of a specific length 𝑇 into the model. In our work we want to 
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use 2D image data as input samples. This can be done in various ways. One possibility it to 
flatten 2D image data to obtain a one-dimensional vector and then couple each input to one 

reservoir unit in the first time step. Without adding additional inputs, the reservoir then swings 

for some time steps to unfold its dynamics [27]. In this approach the number of reservoir units is 

directly linked to the number of input units. For high dimensional input data reservoirs can hence 
become quite large. As mentioned above, we need to put some constraint on the largest 

Eigenvalue of the reservoir weight matrix 𝑊𝑟𝑒𝑠 for stability reasons. Getting the largest 

Eigenvalue becomes computationally intensive for huge reservoirs and we therefore chose a 
different approach: 

 

Here we transform images into a temporal signal. This is done by transforming one of the spatial 
dimensions (longitude) to a temporal one and passing 2D images column-wise into a base ESN 

model [28]. This is sketched in Figure 2.Feeding an image with dimensions 𝐷 ×  𝑇 into a base 

ESN model is equivalent to having 𝐷 input time series with length 𝑇. This allows using ESN 

models for image classification. 
 

3. LAYER-WISE RELEVANCE PROPAGATION 
 

LRP was first introduced by Bach et al. in 2015 [18]. LRP aims at understanding decisions of 

non-linear classifiers like ANNs. It can be used on classification and regression problems. This 
technique opens the black-box by visualizing the contributions of single input units to model 

predictions. Resulting relevance scores for an individual input sample can be presented as a heat 

map and give an intuitive understanding of which parts of the input sample have the highest 
relevance. 

 

LRP has been successfully applied to various network architectures including MLP, CNN or 
LSTM models [20], [29]. But to the best of our knowledge, LRP has not been used for ESN 

models. In this section we will briefly repeat the general idea behind LRP before we customize 

this technique for using it on base ESN models.  

 

3.1. General idea of LRP 
 
LRP, as presented in [18], does not provide some closed-form solution but rather comes as a set 

of constraints. Used on image data it serves as a concept for achieving a pixel-wise 

decomposition of the final model output 𝑦(𝑇), as stated in Equation 4. 

 

𝑦(𝑇) = ∑ 𝑅𝑛
(1)

𝑛           (4) 

 

The model output 𝑦(𝑇) is taken as the final or total relevance. The ultimate goal is to decompose 

the final relevance and find the contributions 𝑅𝑛
(1)

, also referred to as relevance score of each of 

the n input pixels. Here superscript (1) refers to the first layer, which is the input layer. 

 
To achieve that goal the relevance is traced back from the output layer all the way through lower 

layers until we finally reach the input layer. In addition to Equation 4 the second constraint is 

stated in Equation 5. 

 

𝑦(𝑇) = ⋯ = ∑ 𝑅𝑗
(𝑙+1)

𝑗 = ∑ 𝑅𝑖
(𝑙)

𝑖 = ⋯ = ∑ 𝑅𝑛
(1)

𝑛           (5) 

 
This framework guarantees total relevance to be preserved in each layer. For calculating the 

relevance map for an individual input sample, the trained model weights and biases are fixed. We 
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then start with the model output as final relevance. A common approach for tracing relevance 
back through lower layers is by taking only positive contributions of pre-activations into account. 

This clearly satisfies constraints in Equations 4 and 5. An example is sketched in Figure 3. 

 

 
 

Figure 3. Illustrating the general idea behind LRP: Relevance is traced back from higher to lower layers. 

 

Assume units 𝑗 = 1 and 𝑗 = 2 of layer (𝑙 + 1) have known relevance scores 𝑅1
(𝑙+1)

 and 𝑅2
(𝑙+1)

, 

respectively. This relevance is now distributed on units 𝑖 = 1, 2, 3 of layer (𝑙). Unit 𝑖 = 1 ends up 

having relevance 𝑅1
(𝑙)

from two contributions, as stated in Equation 6: One from unit 𝑗 = 1 and 

one from unit 𝑗 = 2 of layer (𝑙 + 1), indicated by solid blue and red lines in Figure 3, 

respectively. 
 

𝑅1
(𝑙)

= (
𝑎1𝑤1:1

𝑎1𝑤1:1+𝑎2𝑤2:1+𝑎3𝑤3:1
) 𝑅1

(𝑙+1)
+ (

𝑎1𝑤1:2

𝑎1𝑤1:2+𝑎2𝑤2:2+𝑎3𝑤3:2
) 𝑅2

(𝑙+1)
          (6) 

 

Here 𝑎1, 𝑎2 and 𝑎3 denote activations of units 𝑖 = 1,2,3 of layer (𝑙), respectively and 𝑤𝑖:𝑗  

denotes the weight connecting some unit 𝑖 from layer (𝑙) with some unit 𝑗 from subsequent layer 

(𝑙 + 1). This can be simplified using𝑧𝑖𝑗
+ = max (𝑎𝑖𝑤𝑖:𝑗 , 0), where + denotes that we only 

consider positive contributions. Relevance 𝑅𝑖=𝑖0

(𝑙)
for a unit 𝑖0 oflayer (𝑙) is stated in Equation 7. 

 

𝑅𝑖=𝑖0

(𝑙)
= ∑

𝑧𝑖0𝑗
+

∑ 𝑧𝑖𝑗
+

𝑖
𝑗 𝑅𝑗

(𝑙+1)
          (7) 

 

3.2. LRP customized for ESN models 
 

Applying LRP to ESNs requires extending the basic methodology described in Section 3.1. Our 
ESN model consists of an input and an output layer. In between we have the reservoir with 

recurrence in time. Before we can apply LRP, we need to unfold the reservoir dynamics. Feeding 

an image consisting of 𝑇 columns into a base ESN model leads to 𝑇 time steps to be treated as 

individual layers. Accordingly, we have inputs 𝑢(𝑡) ∈  ℝ𝐷×1 for time steps 𝑡 = 1. . 𝑇 with 𝐷 
input features. 

 

In Section 2 we introduced our base ESN model including a leaky reservoir with leak rate 𝛼. 

Reservoir state transitions for time steps 𝑡 = 2. . 𝑇 have been stated in Equation 1. The initial 

reservoir states 𝑥(1) are somewhat special, since there are no previous time step’s reservoir states 
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𝑥(0), as we have seen in Equation 2. Figure 4 shows unfolded reservoir dynamics. In addition to 
that we decomposed reservoir state transitions to visualize distinct contributions separately. As 

soon as we have trained our base ESN model, the sketch in Figure 4 can be used to understand 

how the model output is calculated by forward passing an input sample through the network: In 

this example we have 𝐷 = 5 input features in every time step (shaded yellow), denoted as 𝑢(𝑡) 

for 𝑡 = 1. . 𝑇. For simplicity we further assume to only have six reservoir units providing 

reservoir states 𝑥(𝑡) for 𝑡 = 1. . 𝑇 (shaded red). Reservoir states multiplied with (1 − 𝛼) 

contribute to subsequent time step’s reservoir states, as sketched in the lower track of Figure 4. 

The second contribution is given by 𝛼 𝑎𝑐𝑡(. ). Here 𝑎𝑐𝑡(. ) (shaded blue) is some appropriate 

activation function (e.g.sigmoid or tanh) and takes as argument the current time step’s input 

𝑊𝑖𝑛𝑢(𝑡) + 𝑏𝑖𝑛plus incorporates the recurrence inside the reservoir 𝑊𝑟𝑒𝑠𝑥(𝑡 − 1) + 𝑏𝑟𝑒𝑠. Once 

we calculated final reservoir states 𝑥(𝑇) we obtain model output 𝑦(𝑇) as seen in Equation 3 
using trained output weights and bias. 

 

 
 

Figure 4. Unfolding our base ESN model in time. 

 
But Figure 4 also illustrates how LRP works for our base ESN model. As usual, we pick an 

individual input sample and take the model output as final relevance. We then move backwards 

through all time steps. Opposed to the general concept of LRP, total relevance is not constant 

from time step to time step. Instead, a part of the total relevance is attributed to each time step’s 

input 𝑢(𝑡) and only the remaining relevance is passed on until we reach the initial input 𝑢(1). 

The initial input is special in a way, that it absorbs all residual relevance. For 𝐷 input features we 

have 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), . . , 𝑢𝐷(𝑡))𝑇 ∈ ℝ𝐷×1 for each time step 𝑡 =  1. . 𝑇. And accordingly, 

we obtain relevance scores 𝑅(𝑡) = (𝑅1
(𝑡)

, 𝑅2
(𝑡)

, . . , 𝑅𝐷
(𝑡)

)𝑇 ∈ ℝ𝐷×1. These column vectors of 

relevance scores 𝑅(𝑡) need to be combined to get the final relevance map 𝑅 ∈ ℝ𝐷×𝑇 , which can 

be visualized as heat map having the same dimensions as the input samples. Thus, total relevance 

is still preserved if we customize LRP to ESN models. However, Equations 4 and 5 need to be 

modified and can be combined to Equation 8. 
 

𝑦(𝑇) = ∑ 𝑅(𝑡)
𝑡 = ∑ ∑ 𝑅𝑑

(𝑡)
𝑑𝑡           (8) 

 

The final model output 𝑦(𝑇) is taken as total relevance and equals the sum of relevance scores 

𝑅𝑑
(𝑡)

 with 𝑡 = 1. . 𝑇 and 𝑑 = 1. . 𝐷. But as mentioned above, the initial input 𝑢(1) absorbs all 

residual relevance. The residual relevance itself depends on the amount of relevance, that has 

already been attributed to all other time steps’ inputs 𝑢(2), . . , 𝑢(𝑇). The speed of decay for total 

relevance, as it is passed through the layers in a descending order, is controlled by leak rate 𝛼. 

The role of 𝛼 as memory parameter has been discussed in Section 2. If α is chosen too low, we 
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find an unreasonably high amount of residual relevance to be assigned to the initial input 𝑢(1). 
To overcome this problem, we add a dummy column of ones as initial column to all input 

samples. This does not affect model performance, since the additional column is identical for all 

samples. The relevance 𝑅(1) attributed to the dummy column is meaningless in the overall 

relevance map 𝑅 and can be omitted. 

 

4. APPLICATION TO ENSO 
 
In this section we will briefly recap the main characteristics of ENSO. Additional details on 

ENSO can be found e.g. in [20], [21]. We then show results from using MLP and our base ESN 

model for classifying 2D input samples and open the black-box by applying LRP as described in 
Sections 3.1. and 3.2. We intentionally choose ENSO as well-known problem to gain confidence 

in our model and methodology to open the door for applying LRP and further xAI techniques 

with ESN models on unsolved problems in the context of Earth system and climate research. 
 

4.1. ENSO Patterns 
 
For our studies we use measured monthly mean SST for the years 1880 through 2021, provided 

by US National Oceanic and Atmospheric Administration. Raw data comes in a 2° by 2° latitude-

longitude grid. Each sample consists of 89 × 180 grid points. 

 
There are several indices used to monitor the sea surface temperature in the Tropical Pacific. All 

of these indices are based on SST anomalies averaged across a given region. Usually, the 

anomalies are computed relative to a seasonal cycle estimated from some reference period 
(climatology) of 30 years (here 1980 through 2009). For our purpose we use SST anomalies 

averaged over the most commonly used Niño 3.4 region (5°N–5°S, 120–170°W), normalized by 

its standard deviation over the reference period to obtain a SST anomaly index used to define El 
Niño and La Niña events, which are associated with anomalous warm and cold SST, respectively. 

The index is shown in Figure 5.  

 

 
 

Figure 5. SST anomaly index used to define El Niño and La Niña events. 

 

El Niño is referred to index values ≥ 0.5 (red), whereas La Niña events are referred to index 

values ≤ −0.5 (blue). In between we find neutral states, which are not considered here for 

classification. The SST anomaly index is used for labelling input samples and also as a single 

continuous target. In the time span from 1880 through 2021 we have a total number of 1,041 
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samples and split data into train and validation samples, using the first 80% for training (832 
samples) and remaining 20% for validation (209 samples).Composite average SST anomaly 

patterns for El Niño and La Niña are shown in Figure 6. 

 

 
 

Figure 6. Composite average SST anomaly patterns for El Niño (left-hand side) and La Niña (right-hand 

side) events. Niño 3.4 region is highlighted by a black rectangle. 

 

4.2. Classification and LRP 
 
As described in Section 4.1 we train our models on 832 SST anomaly fields, where each input 

sample has dimensions 89 × 180 (latitude x longitude). SST is not defined over land masses. 

This reduces the number of valid grid points. Raw data shows some unreasonably high or low 

values: Here we limit SST anomalies to the range of [−5°𝐶, 5°𝐶]. Values exceeding these limits 
are set to upper and lower bound, respectively. 

 

For our baseline models (linear regression and MLP) we vectorize valid grid points as inputs. 

SST anomalies are scaled to [−1, 1]. In any case we use the normalized SST anomaly index 
shown in Figure 5 as single continuous target. We then transform this regression problem to fit 

our classification problem by creating binary predictions from model output: Positive predictions 

refer to El Niño, whereas negative predictions refer to La El Niña events. 
 

With this setup we easily reach 100% classification accuracy on both, El Niño and La Niña 

samples from train and validation data. This perfection was expected, as already shown in [20] 

and is due to the simplicity of the underlying problem. 
 

For the base ESN model, we do not flatten input samples, as done for the linear regression and 

MLP approach. Instead, we feed 2D SST anomaly fields into our model and use longitude as time 
dimension. In other words, we have 89 input features, each consisting of 180 time steps. We deal 

with invalid grid points by setting SST anomalies to zero after scaling to inputs to [−1, 1]. Again, 

we use normalized SST anomaly index as single continuous target and create binary predictions 

from model output. Reservoir’s leak rate is set to 𝛼 = 0.01. 
 

This also leads to perfect accuracy on El Niño and La Niña, at least on train data. Validation 

accuracy is found to be 99% for both, El Niño and La Niña. We then focus on El Niño, for which 
we show the mean relevance maps obtained from MLP and our base ESN model, averaged over 

all train samples in Figure 7. 
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Figure 7. Mean relevance (normalized, unitless) obtained from LRP with MLP (left-hand side) and our 

base ESN model (right-hand side) on El Niño train samples. 

 

We find the MLP to put its focus only on some narrow, elliptical region inside the Niño region in 
the Tropical Pacific. This was also found in [20] and appears to be reasonable and efficient to 

discriminate El Niño from La Niña samples. Compared to that, the mean relevance map obtained 

from our base ESN model also emphasizes the same spot to come to its conclusion. But in 
addition to that, we find significantly more structure in mean relevance highlighting other spots 

outside Niño region to be relevant. High relevance scores are attributed to the area between South 

Africa and Antarctica. 

 

4.3. Random Permutation 
 
ENSO patterns show some strong zonal structure: SST anomalies for both, El Niño and La Niña, 

are concentrated on some narrow range in latitude and some extended region in longitude. If we 

want to use our base ESN model to unknown problems, we need to make sure that this approach 

is also working without having such characteristic zonal structure present. To proof this, we 
apply some random (but reversible!) permutation on the columns of all input samples before 

training our model, to shuffle the order in time. The result is shown in Figure 8. 

 

 
 

Figure 8. Composite average SST anomaly patterns for El Niño (left-hand side) and the same average SST 

anomaly AFTER some random permutation of columns (right-hand side). 

 

We then train our base ESN model with unchanged parameters and apply LRP on permuted 

inputs. The obtained mean relevance map calculated on all El Niño train samples is shown in 

Figure 9. To restore some more familiar mean relevance map, the permutation needs to be 
reversed. The result is also shown in in Figure 9. 
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Figure 9. Mean relevance (normalized, unitless) obtained from LRP with base ESN model on PERMUTED 

El Niño train samples (left-hand side). And restored mean relevance after REVERSED permutation (right-

hand side). 

 
We find the restored mean relevance map to resemble the original mean relevance map, shown 

in Figure 7. This clearly proofs that our approach to pass 2D image data into base ESN models 

does not rely on the underlying structure in the input data. We also find the same accuracy for 

base ESN models trained with or without permuting input columns. This empowers Echo State 
Networks to be used on unknown problems in the context of climate and ocean science in 

combination with xAI techniques. 

 

4.4. Fading Memory 
 

In Section 2 we introduced the reservoir state transition as defined by Equation 1. Leak rate 𝛼 is 
found to be a crucial parameter. It determines the memory of the reservoir and can be seen as the 

inverse of the memory time scale of the ESN: The larger the leak rate, the faster the reservoir 

forgets previous time steps’ inputs. Here we use 2D input samples with 𝑇 = 180 time steps for 
our base ESN model. In other words, we feed a 2D input sample column by column into the 

model, starting on the left-hand side. This procedure requires 𝛼 to be chosen low enough to 

enable the reservoir to remember inputs from all time steps. This is especially important if we 

apply our method to unknown problems, since we do not know in advance which time steps are 
most relevant for achieving optimal performance. 
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Figure 10. Fading memory effect: Mean relevance (normalized, unitless) obtained from LRP with base 

ESN model on El Niño train samples for α = 0.01 (A), 0.05 (B), 0.2 (C) and 0.4 (D), respectively. 

 
With increasing leak rate, the reservoir memory fades. This effect is visualized in Figure 10. Here 

we show mean relevance maps for El Niño obtained from ESN models trained with four different 

leak rates 𝛼 = 0.01, 0.05, 0.2 and 0.4, respectively. For 𝛼 = 0.01 and 0.05 we find classification 
accuracy on train samples to be 100%, while validation accuracy reaches 99%. Accordingly, we 

observe high relevance in the Tropical Pacific region, as seen in relevance maps (A) and (B) in 

Figure 10. This appears to be reasonable for discriminating ENSO patterns. With further 

increasing𝛼 = 0.2 and 0.4 the validation accuracy drops to 95% and 58%, respectively. Mean 
relevance maps (C) and (D) in Figure 10 explain this decline in model performance: The 

reservoir simply loses its memory of former input time steps and we find nonzero relevance 

concentrated on the right-hand side of the relevance maps, representing later time steps. For 𝛼 =
0.4 the model fails to distinguish between El Niño and La Niña samples. An accuracy of only 
58% is close to random guessing. 

 

5. DISCUSSION AND CONCLUSION 
 
In this work we successfully used ESNs for image classification and applied LRP to this special 

type of RNNs, which has not been done before. This enabled us to look inside the model and 

understand, what the model has learned. LRP is a well-known approach and belongs to the xAI 
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toolbox. Using this technique on a reservoir with 𝑇 = 180 time steps is challenging, but possible. 

Our proposed LRP customized for ESNs also empowers to study the effect of leak rate 𝛼. We 

found out that 𝛼 needs to be chosen appropriately to allow the model to take inputs from all time 

steps into account. 

 
Compared to MLP, mean relevance maps obtained from our ESN model reveal additional 

structure in terms of high relevance scores outside the Niño region. This needs to be further 

investigated and could point out existing teleconnections and help to find, where else ENSO 
leaves its footprint. 

 

We find accuracy to be competitive compared to baseline models (linear regression and MLP). 

The advantage of ESNs is the low number of trainable parameters, which makes them fast and, 
thus, easy to train. In addition, our permutation experiments show, that ESN models yield 

reproducible and stable results. This even holds true if we only have limited train data, as often in 

the domain of Earth system and climate research. So, we can combine the advantages of ESN 
models with the power of the broad xAI toolbox. Further techniques to be applied to ESN models 

on similar problems may be backward optimization, sensitivity analysis or salience maps. 

 
Beyond application to geospatial data, similar ESN models could be used for time series 

prediction: Instead of feeding 2D images into the model, we may pass a certain number of 

climate indices with specific input length to an ESN model and LRP could serve as an alternative 

for the temporal attention mechanism often used in the context of LSTM sequence-to-sequence 
models. In this way ESN models have good prospects to help understanding known 

teleconnections in atmospheric science or to find new relationships. 

 

APPENDIX: MODEL DETAILS 
 

In this section we briefly present some technical details on the multilayer perceptron used as 

baseline model and on our ESN model. The MLP was trained on vectorized SST anomaly fields, 

where we only considered valid grid points. In this case we worked with 10,988 input values for 
each sample. The input layer of the MLP consists of the same number of input units. We then 

have two hidden layers of 8 units each and finally one output unit. For a fully connected MLP we 

end up with 87,993 trainable weights and biases. We used a linear activation function (identity) 

for all layers and the Adam optimizer [30] with constant learning rate 𝑙𝑟 = 0.0005. The model 

was trained over 30 epochs with a batch size of 10. Since we have a regression problem using 

continuous SST anomaly index as single target, we took the mean squared difference of model 

output and ground truth as loss function, also referred to as mean squared error loss. 
 

For our base ESN model, the number of reservoir units is set to 𝑛𝑟𝑒𝑠 = 300. Input and reservoir 

weights and biases are drawn from a random uniform distribution in [−0.1, 0.1]. Reservoir units 

are only sparsely connected with 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 0.3. After initialization the reservoir weights are 
normalized: The largest Eigenvalue of the reservoir weight matrix is set to 0.8. Leak rate is set to 

𝛼 = 0.01. As activation in the reservoir state transition, we use tanh. With this setup our base 

ESN model only requires 300 trainable output weights plus one output bias, which is significantly 
less compared to 87,993 trainable parameters for the MLP model. 

 

Raw data used in this work has been uploaded to Zenodo [31]. Annotated Python code can be 
found in our GitHub repository [32]. 
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