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ABSTRACT 

We present a new design for random number generation. The outputs of linear feedback shift 

registers (LFSRs) act as continuous inputs to the two boundaries of a one-dimensional (1-D) 

Elementary Cellular Automata (ECA). The results show superior randomness features and the 

output string has passed the Diehard statistical battery of tests. The design is good candidate 

for parallel random number generation, has strong correlation immunity and it is inherently 

amenable for VLSI implementation. 
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1. INTRODUCTION 
Both LFSRs and CAs have been used extensively in a wide area of applications, particularly 

random number generation for Mont Carlo simulation, communications, cryptography and 

network security [1-8].  LFSRs, albeit simple in structure and design were proven to have 

comparatively weak statistical featured when utilized in the production of pseudo random 

numbers [2]. The weakness can be attributed to the linearity of the exclusive-or function used in 

the feedback network.. Additionally, non-linear feedback shift registers have their problems as 

well [1]. On the other hand, a uniform 1-D CA, where one rule is implemented throughout the 

spatiotemporal evolution of the CA, have shown unique and useful characteristics, and have been 

suggested by [3,4] and others for use in random number generation. A notable impediment 

however, is the input to the boundaries of the CA, where it is confined to a limited span. For 

example, a necessary condition for an unbounded (bi-infinite) 1-D ECA to produce a pseudo 

random contiguous string of length x ¥Î  is to have a span of 2x +  cells long. Hence, a 

relatively long string of output will render the CA overly unsuitable. However, a shorter span

K ¥Î  implies a constant span length and therefore a fixed and limited number of cells. Hence, 

inputs are needed to feed the two extremities of the ECA. One approach attempted to solve this 

problem is to make the ECA evolve in a continuous loop (referred to as autonomous or periodic), 

in which case the peripheral cells (i.e. the last and the first extreme cells) are made adjacent to 
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each other, as depicted in figure 1. An alternative technique used earlier in the literature is to feed 

the peripheral cells with fixed inputs. Figure 2 depicts the various boundaries from (2)GF used.  
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Figure 1, ECA periodic boundary configuration 
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Figure 2. Common one dimensional cellular automaton fixed boundary conditions. 

 

All these methods running under chaotic rule 30 on uniform one-dimensional ECAs have 

produced much shorter periods than the LFSR and drastically failed the well-established Diehard 

battery of tests [7]. This paper reports the findings of a new method whereby a pair of 

uncorrelated LFSRs are used to generate the two boundary conditions. With this design the output 

string of the center bit of the ECA evolving for time steps 2= KT , where K is the span length, 

has passed the Diehard battery of tests and produced attractive parallelism and correlation 

properties. This paper is arranged such that the theoretical analysis and the proposed approach are 

included in the section called Preliminaries, while the results section discusses the improvement 

in the performance of the ECA. The conclusion finalizes the outcome of the paper.  
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2. PRELIMINARIES 

For the purpose of this paper we will restrict our attention towards one dimensional cellular 

automaton. The cells are arranged on a linear finite lattice, with a symmetrical neighborhood of 

three cells and radius 1=r . Each cell takes its value from the set {0,1, ..., }=G p and we let

2=p . All cells are updated synchronously and the cells are restricted to local neighborhood 

interaction with no global communication. The ECA will evolve according to one uniform 

neighborhood transition function, which is a local function (rule) 
2 1: r

f G G
+ ®  where the 

ECA evolves after certain number of time steps T. Out of a total of 
2 1+r

pp rules we use rule 30 as 

suggested by Wolfram and adopt his numbering scheme [3,4]. It follows that a 1-D ECA is a 

linear register of , Î ¥K K , memory cells. Each cell is represented by
t

k
c , where [1 : ]k K=

and [1, )= ¥t , that describes the content of memory location k  at time evolution stept . Since 

2=p  the cell takes one of two states from (2)GF . This implies the applicability of Boolean 

algebra to the design over (2)GF . A minimum Boolean representation of chaotic Rule30 in terms 

of the relative neighborhood cells is: 
1

1 1( )t t t t

k k k kc c c c
+

+ -= Å +  or 
1

1 1 1( ) mod 2t t t t t t

i k k k k kc c c c c c
+

+ - -= + + + × , where

2 2k K£ £ -  , as depicted in figure 3.  
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Figure 3. Illustration of Rule 30 operating on the present state of neighborhood of time step t to 

produce the next state cell of time step t+1. 
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Furthermore, since the ECA is actually a finite state machine then the present state of the 

neighborhood of cell
t

k
c , 

1 1
( , , )

t t t

k k k
c c c

+ -  
at time step t and the next state  

1t

k
c

+
 at time step t+1, 

can be analyzed by the state transition table and the state diagram depicted in figure 4. 
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Figure 4,  State machine analysis of Rule 30. 

It can be seen from above that in order to evolve from the present time step t to the next time step 

t+1, each cell at lattice  location k would require the present state of itself 
t

k
c  as well as the 

present state of the other two cells in its neighborhood 
1+

t

k
c  and 

1−

t

k
c . Therefore, if the ECA is 

allowed to expand freely, leftwise and rightwise the total number of cells at each time step t+1, 

say K ∈N  would need 2K +  cells at time step t. For example to produce the string 

1101110T =  from the evolution of the unbounded ECA of span length WÎ ¥  by the 

concatenation of the center cell would require a span of length 2 1TW= + , i.e. 13 cells, as can 

be seen in figure 5. Hence, if the ECA is unbounded then for a string of T-bits would require the 

evolution of the ECA of span 2 1T + as illustrated in figure 5. This condition will eventually lead 

to an unpractical span of the ECA. Hence, it is imperative that the ECA has to be bounded. The 

open literature is rich with research on fixing the size of the ECA and provides data for the 

extreme cells of the bounded ECA. Figure 2 gives a brief account of some common fixed 

boundary conditions. Figure 6 categorizes the boundary conditions to include the new boundary 

condition proposed in this paper using LFSR as a new source for boundary conditions. The fixed 

boundary conditions are already illustrated in figure 1. The miscellaneous category includes 

either some ad hoc permutations of the fixed boundaries or some fixed sequence of inputs. The 

autonomous category, commonly referred to as periodic, make the extreme cells of the ECA 

adjacent, as illustrated in figure 2. The resultant ECA becomes circular as depicted in figure 8, 

and with time evolution it can be visualized as a cylinder. The expression for the extreme left and 

right cells at time step t+1 are, respectively  

1

1 0 1 2
( )

t t t t

K K K
c c c c

+
- - -

= Å +  and 
1

0 1 1 0
( )

t t t t

K
c c c c

+
-

= Å + . 

The published results of these different types of boundary conditions produced poor results when 

used as a source of generating random numbers. In this paper we are proposing a new source for 

the boundaries. We have used the well established LFSR as the source of inputs to the extreme 

cells of the fixed 1-D ECA, as shown in figure 9. A LFSR of span N  memory cells can be 

described by the following simple recurrence equation,  

1

0 0 0 1 1 1 1

t t t t t

i i N NL a L a L a L a L+
- -Å Å Å Å= ××× ××× where (2)Îia GF . 

The choice of ia are exactly the coefficients of a primitive polynomial of degreeN . The extreme 

cells of the new design at time step t+1 can now be described by  
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Figure 5, Simple time evolution of an unbounded 1-D ECA under GF(2). 
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Figure 6,  Illustration of time evolution of a bi-infinite 1-D ECA. 

 

 

Figure 7,  Categorization of a fixed span 1-D ECA boundary condition sources. 
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Figure 8,  Another illustration of the autonomous (periodic) boundary conditions. 

3. RESULTS 
In order to test the statistical properties of the new proposed design, we developed a suite of 

programs emulating all known types of boundary conditions for wide range of spans for both the 

ECA and the LFSRs used as boundaries. We will include snapshots of results obtained for 

representative runs on the Diehard battery of tests [8], which has been adopted in this paper due 

to its well established stringent requirements on the statistical randomness of the output string. 

Due to the restrictions imposed by this test the ECA span K has to be at least 27-bit long evolving 

for a minimum of 
K2 time steps. Table 1 shows the results of running the diehard tests on the 

periodic boundary conditions for spans 32, 33, up to 512. The ECA running in the periodic 

boundary mode has not been able to pass all the tests even for a span of 256-bits. The results of 

running the diehard tests on the fixed boundary conditions have totally failed and therefore not 

worth reporting here. The results of the diehard tests on the ECA using two LFSRs of span 3-bit 

each as the boundary conditions for various increasing spans of the ECA did not show any 

significant change and therefore it is not reported.  It is clear that such boundary conditions will 

give slightly better results than fixed boundary conditions but do not show improvement over the 

periodic boundary condition. However, when the LFSR span increased to 15-bits for both 

registers some improvement were noticeable as shown by the results reported in table 2. Excellent 

results were obtained when the span of the LFSRs were increased to match the span of the ECA. 

The ECA has passed all tests with extremely superior p-values, as shown in table 3.

4. CONCLUSIONS 

The string of contiguous stream data collected from the evolution of the 1-D ECA for the center 

cell of various boundary conditions were tested by the 15 Diehard battery of tests. The various 

fixed boundary conditions failed the diehard tests almost completely and were considered 

unworthy reporting. The autonomous boundary conditions have shown far better statistical 

properties than the fixed boundary conditions. However, it still falls far below the minimum 

requirements of the diehard tests for reliable considerations in producing dependable random 

numbers even for long spans of the ECA (512-bit). When the boundaries were fed from LFSRs 

results did not improve significantly until the span of the LFSRs were comparable to that of the 

ECA. The results steadily improved up to the upper bound when the two spans were comparable. 
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It can be concluded that the new approach can produce random numbers even at modest size of 

the ECA (i.e. 27-bit). More in depth study of the results show that the new approach produced 

superior p-values than the best of the autonomous results. Further assertion of the diehard results 

are also apparent from visual inspection of the spatiotemporal output as can be seen from figure 

10. It is easy to expect that the fixed boundary conditions cause a ECA running under Rule 30, 

which is in group III (i.e. the chaotic class) to evolve into Group I or II (i.e. point attractors or 

limit cycles with extremely small periods), according to Wolfram’s ECA classification [4-5]. 

Therefore, such boundary conditions preclude these ECAs from achieving strong random number 

generators. The autonomous (periodic) boundary conditions, on the other hand gave better results 

which is indicative of better distribution during ECA evolution. However, the periods of this type 

were far lower than the maximum length obtainable from LFSRs. The proposed design have an 

added favorable feature when considering the initial seeds. It is clear that all the possible 
K2 K-

tuples can be used as seeds including the all 0’s and all 1’s that usually yield quiescent states. 

This is not possible with any other known boundary conditions including the autonomous type. 

All the tests were performed using a single one as the initial seed. This is admittedly not the case 

in a practical situation. Some patterns were observed during the initial evolution of the ECA but 

did not persist. Although these initial patterns did not negatively impact the diehard tests it was 

found that avoiding the use of trinomials for the LFSRs and replace them with primitive 

polynomials of better distribution of the coefficients managed to remove these patterns. One 

salient feature of the design is the almost total destruction of the cross-correlation between 

different cells as shown in figure 11(a). This strong correlation is an inherent feature of LFSRs 

that can be observed as maximum and constant between any two cells of the LFSR and as linear 

patterns on the diagonal ridge between the outputs of the LFSR cells, figure 11(b). An immediate 

consequence is the ability to use the ECA as a parallel source of pseudo random numbers that can 

be considered a strong candidate for parallel data compaction (signature analysis) in VLSI testing 

[8]. This is justified since the structure as depicted in figure 9 presents a simple memory-based 

and inherently parallel design that is amenable to large scale integration. Inspection of rule 30 

reveals that the function is surjective. Since reversibility implies bijection, it follows that the 

proposed system is not clear cut reversible. Hence analytical techniques may not be available to 

adequately and inversely describe the spatiotemporal data evolution in at most polynomial time. 

For a LFSR of spanN , there are 
N(2 1)−  N-tuple words as seeds. The two LFSRs are 

uncorrelated and running independently and synchronously, hence the effective input 

computational complexity from these registers to the ECA would be N 2(2 1)− . The 1-D ECA of 

span K can be initialized with a total of 
K2 K-tuple words as initial seeds. There are a total of 

32

2
rules, which is the rule space of a1-D ECA.  Thus the computational asymptotic complexity of the 

system is 

 Ο
3

N 2 2 K((2 1) 2 2 )− ⋅ ⋅ ≈  Ο 3K(2 )  for K� N, as compared to 2N for the LFSR and Ο K(2 )  for a 1-D 

ECA with autonomous boundary conditions. 
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Figure 9,  Block Diagram Representation of the Proposed ECA System, reversing the order of 

indexing, such that the most significant cell is the extreme left hand cell and vice versa for the 

extreme right hand cell which becomes the least significant cell. 

Table 1,  Diehard tests results for 1-D ECA of variable spans and with autonomous boundaries. 

 
S32 S33 S64 S128 S256 S512

T_1 0.4913 0.6089 0.4871 0.5683 0.5976 0.7166

T_2 1 1 1 1 1 1

T_3 0.759 0.7895 0.5035 0.4525 0.643 1

T_4 1 1 1 1 1 1

T_5 1 1 0.4973 0.5195 0.5777 0.7068

T_6 1 1 0.804 0.7769 0.4856 0.7756

T_7 1 1 0.999 1 1 1

T_8 1 1 1 1 1 1

T_9 1 1 0.6235 1 0.431 0.3777

T_10 1 1 0.4376 0.6587 0.489 0.5068

T_11 1 1 0.5549 0.5016 0.457 0.4066

T_12 1 1 1 0.019 1 1

T_13 0.3985 0.4106 0.337 1 0.2194 0.375

T_14 1 1 1 0.3576 1 1

T_15 1 0.8809 1 1 0.8697 0.8524

3 pass                         
12 fail

4 pass                             
11 fail

8 pass                            
7 fail

8 pass                            
7 fail

9 pass                            
6 fail

8 pass                            
7 fail

P
_V

A
L

U
E

S

Summary
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Table 2,  Diehard tests results for 1-D ECA of variable spans and with two LFSRs as boundaries 

of span15-bit each. 

S27 S28 S29 S30 S64 S128 S256

T_1 0.8893 0.5869 0.6834 0.005 0.2502 0.5655 0.5638

T_2 1 1 1 1 1 1 1

T_3 0.402 0.2845 0.52 0.485 0.681 0.0795 0.144

T_4 0.997 1 1 1 1 1 1

T_5 1 1 1 1 0.4418 0.5753 0.4226

T_6 1 1 1 1 0.8211 0.6235 0.7855

T_7 1 1 1 1 0.8848 0.992 1

T_8 1 1 1 1 1 1 1

T_9 1 1 1 1 0.4273 0.0373 0.5168

T_10 1 1 1 1 0.2837 0.00035 0.0049

T_11 1 1 1 1 0.2291 0.1859 0.0362

T_12 1 1 1 1 1 1 1

T_13 1 0.0537 0.6473 0.4943 1 0.1131 0.0442

T_14 1 1 1 1 1 1 1

T_15 1 1 1 1 1 1 0.9056

3 pass                       
12 fail

3 pass                      
12 fail

3 pass                         
12 fail

3 pass                          
12 fail

8 pass                             
7 fail

9 pass                               
6 fail

10 pass                                 
5 fail

P
_V

A
L

U
E

S

Summary

  

Table 3,  Diehard tests results for ECA of variable spans and with 2LFSRs for boundaries of same 

as the ECA spans. 

 
S27 S28 S32 S64 S128

T_1 0.242 0.43 0.3046 0.2398 0.2695

T_2 0.0744 0.4376 0.1128 0.5284 0.2123

T_3 0.8442 0.6365 0.3417 0.3317 0.5543

T_4 0.4688 0.47 0.4323 0.2713 0.0628

T_5 0.52235 0.4697 0.5166 0.4421 0.5454

T_6 0.4755 0.32 0.5486 0.5584 0.4654

T_7 0.6092 0.485 0.3151 0.4642 0.6849

T_8 0.5581 0.5083 0.4601 0.5009 0.6135

T_9 0.2253 0.6181 0.6947 0.5722 0.5413

T_10 0.8818 0.2469 0.9452 0.728 0.0897

T_11 0.7111 0.3404 0.1944 0.7524 0.5147

T_12 0.456 0.423 0.9646 0.9847 0.1522

T_13 0.3026 0.1387 0.2413 0.1063 0.3202

T_14 0.2085 0.6276 0.1753 0.3521 0.4801

T_15 0.343 0.5539 0.7578 0.4428 0.4845

15 pass                                
0 fail

15 pass                                 
0 fail

15 pass                                        
0 fail

15 pass                                         
0 fail

15 pass                                          
0 fail

P
_V

A
L

U
E

S

Summary
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Figure 10,  Spatiotemporal output of 1-D ECA span 31-bit with two LFSRs as boundary inputs 

source of the same span. One hundred time steps is shown. 
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Figure 11,  Spatiotemporal images of ECA28, LFSR28 and correlation properties. 
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