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ABSTRACT 

  
Our main aim of research is to find the limit of Amdahl's Law for multicore processors, to make 

number of cores giving more efficiency to overall architecture of the CMP(Chip Multi 

Processor a.k.a. Multicore Processor). As it is expected this limit will be in the architecture of 

Multicore Processor, or in the programming. We surveyed the architecture of the Multicore 

processors of various chip manufacturers namely INTEL™, AMD™, IBM™ etc., and the 

various techniques there followed in, for improving the performance of the Multicore 

Processors. 

 

We conducted cluster experiments to find this limit. In this paper we propose an alternate design 

of Multicore processor based on the results of our cluster experiment. 
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1. INTRODUCTION: MULTICORE PROCESSOR ARCHITECTURES 
  

As we know a processor (CPU) will have 1) The front end for instruction issue and 2) The Rear 

end as execution engine, a Multicore processor is a one that is having one Front end to issue 

instructions and a number of Execution engines or cores for execution. 

 

The Multicore architectures of both INTEL™ [1] and AMD™ [2] look almost alike except that 

AMD™ has an additional cache attached to the core itself as shown in the Figures (Fig.1 and 

Fig.2 ) below. A Multicore processor will have at least two levels of cache hierarchy, as per the 

placing of theL2 (or L3) cache. 
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Figure 1 INTEL™ Multicore Architecture 

 
In this paper we present a detailed discussion on the various factors affecting the performance of a 

Multicore processor. Next section (Background) will talk on the various techniques followed for 

improving the performance of a CMP. In section 3 we detail the various factors affecting CMP. In 

section 4 problems in a CMP along with analysis of our cluster experiment results. In section 5 

we conclude with proposal of a Multicore Design for better performance. 

 

 

Figure 2 AMD™ Multicore Architecture 

 

2. BACKGROUND: SPEED-UP IN MULTICORE PROCESSORS 

 
In the present day scenario processor performance is of the highest interest to the end users, as 

well all the chip manufacturers are coming out with Multicore processors also known as Chip 

Multi Processors ( CMPs ), which we call the Next generation Processors. These Multicore 

processors are the present day state-of-the-art processors and all the Chip manufacturers  

concentrate  on how to improve the number of cores on the die with the  increased number of 

cores year after year i.e. Dual core, Quad core, Oct core etc.  At the same time it needs to exploit 

the techniques for efficient use of these cores to achieve more parallelisation or to gain speed-up. 

To gain speed-up on these Multicore processors several techniques were identified by many 

researchers that are listed here under: 

 

1. Cascaded Execution, 

2. Execution Migration, 
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3. Speculative Pre-computation, 

4. Dynamic Speculative Pre-computation, 

5. Dynamic Prefetching thread, 

6. Core spilling. 

 

2.1. Cascaded Execution 

 
Due to the presence of inherently sequential code and because of the certain limitations of 

paralleling compilers, many application programs suffer with speed-up on SMP processors. 

Cascaded execution is a technique followed on SMP where the non-parallel loops will be 

distributed across multiple processors for their sequential part, but only a single processor 

executes the loop body. 

 

In cascaded execution the processors that are idle will execute the helper thread to optimize their 

memory state [3]. In the helper phase a processor predicts and loads the data that is needed 

immediately in near future onto the shared memory and all the processors alternatively switch 

between helper and execution phases, but only one processor will be in execution phase and all 

other processors are in their helper phases of the non-parallel loop body. 

 

 

Figure 3 Cascaded Execution 

 
In general a helper phase is responsible either for Prefetching or for sequential buffer data 

restructuring. 

 

2.2. Execution Migration 

 
In this technique a sequential program can migrate from one core to another automatically during 

execution. This is made possible, by making use of the different levels of caches available on a 

Multi core processor, by bringing a lot of cache capacity closer to the execution core and hence 

reducing the average memory access latency. When a single threaded process (or a sequential 

task) is executing on a multi core processor, the processor uses only one core and the cache 

capacity on the other core is wasted. 

 

The Execution migration technique uses one characteristic called split-ability of the working sets 

to identify the cache misses for migration using the affinity algorithm [4].  

 



44                                       Computer Science & Information Technology (CS & IT) 

 

Execution migration will take place from one core to another basing on the principle “If we 

cannot bring the data to the processor as fast as we would like, we could instead take the 

processor to the data” as proposed in [5]. 

 

In general if the working set is not cache-able on to a single L2 it is possible to fit in the overall L2 

cache, so assign the single sequential task to the complete processor and migrate the execution 

with some frequency in a random access policy. For better results it was suggested by [6] to go 

for circular accesses where the frequency of migration will be around ½. 

 

The performance loss due to this migration on a Multicore with private L1 and a shared L2 can be 

minimized if: (a) a migrating thread continues its execution on a core that was previously visited 

by the thread, and (b) cores remember their predictor state for the previous activation. Dean. M. 

Tullsen, Susan. J. Eggers and others in [6] presented an architecture for simultaneous multi-

threading a.k.a. Hyper threading, that is best suited for (a) minimizing the architecture of the 

conventional super scalar design, (b) providing higher throughput with multi threaded execution 

and is also best suited for single threaded execution (when executing alone). 

 

2.3. Speculative Pre-computation 

 
Day by day processor frequencies are increasing compared to memory access times and hence 

memory latency dominates the processor performance. One way to over come this is to use the 

technique of SMT. But this will not improve the performance of a sequential program (single-

threaded execution). H.Wang, J. P. Shen., et, al; propose a technique called Speculative Pre 

computation (SP) on a SMT [7] or a CMP [8] processor, which uses the idle hard ware thread 

context to execute Speculative threads. SP is a special Prefetch mechanism that identifies load 

instructions that are difficult to Prefetch such as chains of loads. SP concentrates on delinquent 

loads, as they cause more than 80% of L1 cache misses. The addresses accessed by the delinquent 

loads are extracted by a set of dependent instructions known as Pre computation slices (p-slices). 

These P-slices were executed by speculative threads, i.e. when a speculative thread is spawned, it 

pre-computes the address accessed by a future delinquent load and Prefetch the data. This 

speculative thread spawning happens in two ways. 

 

• Basic trigger: - when an instruction in the non-speculative thread reaches the commit 

stage initiates the speculative thread spawn it is called basic trigger. 

• Chaining trigger:- The speculative thread explicitly spawning another speculative thread. 

 

The process of SP requires the following tasks: 

 

1. Identification of the delinquent loads:-These are identified by memory access profiling, 

which is done by either the Compiler or by a memory access simulator. The load 

instructions that have major impact on performance are selected as delinquent loads 

(using L1 misses major, some times L2 or L3 or memory misses may also be considered). 

2. Construction of Pre computation slices (p-slices):-At the time of delinquent load 

execution, the instructions that were executed around 128 instructions prior to are 

identified as a basic trigger, if the same delinquent load is executed for each time this 

instruction is executed, the trigger is confirmed and the p-slice is constructed using the 

load instruction. These constructed p-slices were subjected to optimization by eliminating 

the redundant triggers and useless triggers, and 

3. Establishment of the triggers (Basic and Chaining):- For this the p-slices will be added to 

the object code. 
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As the Prefetching threads run independently from the main thread, and due to the reason the 

addresses are calculated using the code executed from the main thread the technique of SP are 

more efficient than regular Prefetching techniques. The SP spawns the speculative thread either at 

the rename stage of the trigger or at the commit stage. In both the cases there is a need for the 

H/W support so as to copy the Live-in values to the child thread's context from the main thread's 

context. It is observed that on a simulation higher performance is possible with more thread 

contexts as it provides more possibilities for more speculation, but in a realistic environment there 

is a possible degrade of performance due to the overhead of speculation, when using basic 

triggers, as there is a possibility for the main thread to stall as each speculative thread will occupy 

a thread’s context for a longer time period. These problems were overcome by chaining triggers. 

 

The p-slices for the chaining trigger will have 3 parts : 

 

1. A prologue,  

2. A Spawn instruction for spawning another copy of p-slice and 

3. An epilogue. 

 

The prologue contains the loop induction variables and the epilogue contains the actual 

instruction to produce the address of the delinquent load. Spawning a thread via a chaining trigger 

will have less spawning overhead as trigger has no action from the main thread, and the 

speculative thread directly stores the live-in values on to the Live-in buffer and spawns the child 

thread. In case of a processor with a few number of thread contexts it is better to have a pending 

slice queue (PSQ) for maintaining pending p-slices when all thread contexts are busy and the 

chaining trigger spawns speculative threads. 

 

As the Chaining trigger independently spawns the child threads there is a need to verify that 

 

• The speculation is not too aggressive i.e. the data required by the main thread is not 

evicted as well, 

• The spawning should not continue after the main thread was exited. 

 

2.4. Dynamic Speculative Pre-computation 
 

J.D. Collins, H.Wang and D.M.Tullsen, et, al, proposed a technique called Dynamic Speculative 

Pre computation (DSP)[9], which performs all necessary instruction analysis, extraction, and 

optimization with the help of back-end instruction analysis hardware, located off the processor’s 

critical path. DSP is hard ware controlled thread based model of the software based manually 

constructed SP of the previous subsection. 

 

This architecture uses:- 

 

a) Delinquent Load Identification Table for identifying delinquent loads, 

b) Retired Instruction Buffer for construction of pre computation slices and 

c) Spawn Instruction Table for spawning instructions. 

 

2.5. Dynamic Prefetching thread 

 
To better utilize the resources of the CMP is becoming a difficult task for the sequential 

programs. Hou Rui, Long bing Zhang, Weiwu Hu in their paper [10] identify a hardware 

generated Prefetching helper threads to accelerate sequential programs known as Dynamic 

Prefetching Thread (DPT), with two aggressive thread construction policies, “Self-Loop” and 

“Fork-on-recursive-call”. 
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 In the basic policy The Dynamic Prefetching Thread (DPT) is constructed automatically with the 

delinquent loads which are the main cause for the memory stall cycles, where in the DPT is run 

on the idle core of a CMP which gets its context from the “Shadow register”. 

 

The ‘Shadow Register’ is a memory component added to the hardware in the design, between the 

two cores of the dual core processor, and maintains the same data with the registers of the main 

core (the core executing the main thread). For the shadow register, the main core running the 

actual program will have write permission and the other core running the helper thread will have 

only read permissions. With this basic thread construction policy the speedup is very low due to 

limited Prefetching coverage. 

 

• Self-Loop policy: - In the basic policy the delinquent load is dispatched to the idle core 

where as in the 'Self-loop' policy, this delinquent load is dispatched to the idle core to 

Prefetch the next instance of the same delinquent load, i.e. the next instance of the same 

delinquent load is Prefetched into the same core by the same DPT, so that more instances 

of the same delinquent load is available on the same core to reduce the memory 

contention of the shadow register. 

• Fork-on-recursive-call: - The basic policy as well as the ''Self-loop''  policy cannot 

improve the performance of the sequential programs that use tree or graph like linked 

data structures. Both these data structures 'will have nodes connected to adjacent nodes, 

which can be felt like a node of the graph or tree connected to another sub-graph or sub-

tree, accordingly the data structures can be invoked by a recursive function call, and these 

recursive function calls are identified as a Prefetching thread that can be dispatched to an 

idle core. These two policies were considered together in the thread construction policy 

with higher priority for “Fork-on-recursive-call” than the “Self Loop” policy to achieve 

higher speed-up. 

 

Figure 4 Architecture of Dual core with DPT 

 

2.6. Core spilling 

 
Logically CMP should give speed-up on sequential applications also, due to higher transistor 

density available. One way to create CMP is to emulate a cluster with shared common fetch and 

dispatch units. In [11] Cong, J. Han Guoling Jagannathan, et,al., Went orthogonal to this approach 

and proposed the scheme for statically partitioned cores (Which may be clustered subsequently). 
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One bottleneck with clustering approach was centralized cluster scheduling unit, limiting 

scalability. Core Spilling method introduced by them, claims to overcome this giving higher 

scalability.  

 

Core spilling technique presented for single threaded application includes following functional 

parts: 

 

1. An application can continue the speculative execution, even after all available resources 

like Physical register and Scheduling Window. 

2. A Core Spill occurs when either the Instruction Window or the Scheduling Window fills 

up on a core. 

 

For any given spill two cores are involved.  

 

a) Parent which is executing programme before the spill and  

b) Child that receives the spill from the Parent. 

 

Spilling can be implemented by augmenting each core with two additional registers: 

 

1. Spilling Register: It is single bit register to show the status of Core Spill (Happened / Not 

Happened). 

2. Descendent Register: This keeps core ID of the Child of given core. 

 

Along with one Register File, Store Buffer and In-Flight Store need to be created. Core spilling 

performance can be improved by 

 

1. Prefetching, 

2. Locality based Filtering. 

 

2.7. Comparison of the different techniques 

 
The different techniques discussed above claim the following speed-up: 

 

� Speculative Pre computation on Chip Multi Processors - 10 to 12% 

 

� Dynamic Speculative Pre computation (simple p-slices) – 14% 

 

� Dynamic Speculative Pre computation (aggressive optimizations) -33% 

 

� Dynamic Prefetching Thread (basic thread) - 3.8% 

 

� Dynamic Prefetching Thread (aggressive thread construction policies ) - 29.6% 

 

� Core Spilling – 40%. 
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Figure 5 Comparison of the different techniques for speedup on a Multicore 

 

3. FACTORS AFFECTING PERFORMANCE 
 

The CMPs are not mainly designed for performance improvement but to reduce the heat 

produced. As per Murphy’s Law something that is evolved for a particular characteristic / reason 

can not yield something else, of course the improvement in performance of a multicore is a by-

product due to the multiprocessing capabilities of the CMP. 

 

Various Factors: There are many factors that affect the Performance of the CMP, they are: 

 

� Number of Cores, 

 

� Effective cache, 

 

� Core Speed, 

 

� Density of element and 

 

� Amdahl’s Law. 

 

For this discussion we are considering the Multicore Architectures of two competing processor 

manufacturers namely INTEL™ & AMD™ that produce two different designs of the CMP. 

AMD™ having L2 & L3 where as INTEL™ is having simply L2 (refer to Figure 1 & 2). 

 

3.1. Number of Cores  
 

Performance of a CMP is linearly proportional to the no of cores where by a processor can 

accommodate a number of process contexts. As 

 

� Higher number of Cores can go for higher number of Processes depending on the 

availability, 

 

� In case of non-availability of Processes other Cores can go for other tasks like Prefetching 

and Profiling to increase the overall throughput, 
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� As well in such a situation some of the cores will be involved in overall activity and fault 

tolerant processing 

 

Performance α C 

 

Accordingly Multicore processors’ performance is always better than a single-core processor and 

this can deteriorate only on one condition that there is a single process for execution, as well the 

process and data is sequentially sharp and is having lot of jumps where by profiling and/or 

Prefetching is not possible to increase the speedup or throughput. 

 

The constant of proportionality in the above equation depends on several factors like: 

 

1. The number of parallelisable processes, 

2. The number of cores involved in supporting process like Prefetching and profiling, 

3. Parallelism of the Job ( Inherent parallelism ) and 

4. Amdahl’s Law. 

 

3.2. Effective cache 
 

The degree of multiprocessing depends on the total number of process contexts available in the 

memory, Which in turn depends on the total available cache to a core, this is in-line with the 

‘Stored Program Concept’, Which states that a task will get done only when its context is 

available in the memory. In general the size of cache controls the degree of multiprocessing as it 

accommodates the process contexts. So the degree of multiprocessing will mainly depend on the 

total available cache (L2 or L3) per the core but not on the entire Chip. 

 

Effective Cache = {Cache / Core} α L2 / core + L3  

                                                                                                     (in case of AMD™) 

Effective Cache = {Cache / Core} α L2  

                                                                          (in case of INTEL™) 

 

The processing performance depends on 1). Seek time and 2). Fault frequency, of the two 

performance depends linearly on the seek time but exponentially on fault time, when a fault 

occurs the performance goes down, if more processes are there more faults will occur to degrade 

the performance in  AMD™ design, in spite of its superior design. One major reason for this is 

that  AMD™ is still at 45 nm technology where as INTEL™ is at 32 nm technology, so that 

INTEL™ can afford to install more L2; as memory requires more density of element. 

Performance of a CMP is linearly proportional to the seek time and the size of Effective cache. 

 

Performance α Ts ∗ L 

 

The performance is inversely proportional to the memory fault at exponential order to the 

Effective cache size. 

 

Performance α Tf / log L 

 

Where Ts is the seek time, Tf is the fault time and L is the Effective cache 

 

Having L2 & L3 is not a technical advantage of AMD™ but they are countering INTEL™ by 

reducing the cost of the processor. Until and unless seek time reaches the fault time AMD™ can 

not demolish the drawback of lower performance but is never possible as when a fault occurs data 

and/or instruction are to be fetched from a slow speed memory. 



50                                       Computer Science & Information Technology (CS & IT) 

 

 

3.3. Core Speed 
 

The performance also proportional to the core speed, as in a CMP there are a number of cores 

working at the same frequency, Performance is proportional exponentially to the core speed at the 

order of the number of cores. When the Core speed is high the number of mnemonics executed is 

high. Mnemonics executed depends on T cycle, if the Core Speed is high, more T cycles are 

executed in a single unit of time and hence more number of instructions gets executed in time also 

increase, accordingly throughput per core. 

 

Performance α Cs

n 

 

Where Cs is the core speed and ‘n’ is a constant. 

 

The value of ‘n’ depends on several factors like Limit of Amdahl’s Law, Inter communication 

between the cores, losses due to cache conflicts and inherent parallelism of code, and etc.  

 

3.4. Density of element 
 

If density is higher it will affect the performance, because more memory can be put in the die 

which will reduce the number of faults as there is more space on the die, INTEL™ can afford for 

more L2 and / or more cores. Accordingly there will be an automatic improvement in performance 

and so is the case of INTEL™ design.  At Higher density one can afford for more core or element 

which automatically means more functional units and /or more threads per core and hence 

improvement in performance is exponential. 

 

Performance α Dm  

 

Where D is the Density and ‘m’ is a constant. 

 

The value of ‘m’ depends on other factors like number of interconnects. INTEL™ processors are 

performing better due to an additional reason that they have removed interconnects or having pin 

less design, and they are in the die, as at 32 nm technology it is very difficult to put the pin. 

Interconnects are higher implies impedance is more, between each interconnects there is a 

distance which is inversely proportional to capacitance. Which means more impedance producing 

more heat to counter this there is no other go other than reducing the frequency that consume 

lesser wattage. 

 

So higher density will automatically necessitate more core running at lesser frequency and more 

core with more memory will provide better performance is the secret of INTEL™. INTEL™ is 

going for Multicore not because it wants more core but it has reached to the extent that it should 

go for Multicore where as AMD™ went to Multicore just to demonstrate Multicore, that is the 

reason Hex core of AMD™ came to the market much earlier than Hex Core INTEL™. INTEL™ 

Multicore can be over clocked where as AMD™ can not be. That is very clearly evident as 

INTEL™ is using technology only when it is needed and Core 2 Duo or Dual Core are very 

popular, AMD™ is trying to increase the number of cores to increase the degree of multi 

processing with 45 nm technology and the Effective cache per Core (per Core L2 + total L3) is not 

increased, so with lesser sized effective cache when more process contexts are available the total 

number of faults are also more which degrades the performance to a higher level. 
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3.5. Amdahl’s Law 
 

The Amdahl’s law for parallel speed up is given by the formula  

 

Speedup =T (1) / T (N) 

 

Where T (N) is the time it takes to execute the program when using N number of processors [12, 

13]. In case of parallelism this law states that if P is the proportion of a task that can gain benefit 

from parallelisation and ( 1 - P) is the part that cannot go parallel, remains serial, then the 

maximum speed up that can be achieved by using N processors is given by 1/(1-P+(P/N)). When 

N is large i.e. under the limit N tends to Infinite, the speed up is given by 1/ (1-P) which is 

independent of N, the number of processors (cores) and there is no improvement with increasing 

the number of processing elements. This means there is an upper limit of parallelisation for the 

task accordingly the number of cores in multi core processor. 

 

4. PROBLEMS IN A MULTICORE PROCESSOR 

 
A Multicore Processor is bundled with a few Problems:- 

 

• In a Multicore Processor not only the rate of data transfer but also the amount of data 

transfer will have its impact on the throughput or speedup as it has to go for a number of 

tasks (processes) in parallel, accordingly Not only the Core Speed but also the size of 

cache (Effective cache) is of major concern and 

• As per Amdahl’s Law the number of cores for parallel execution is also another factor 

that limits the performance. 

 

We categorized these problems of the Multicore into:- 

 

Performance: - Performance of the Multicore processor should increase with enhancement of the 

number of cores. 

 

Reliability: - Reliability of the Multicore processor should improve with improvement in the 

number of cores. 

 

Backward Compatibility: - The Multicore processor should be backward compatible with all the 

software already in use, or other wise due to the increase in number of cores what ever the 

software technique already in use should not become obsolete. 

 

Localized Processing: - The Multicore Processor should localize processing at each core as 

much as possible; the best example here is the case of a Neural Network where in a lot number of 

neurons working in parallel achieving highest performance with reliability. 

 

4.1. How to improve the Multicore Processor’s Performance 
 

There are few things to be considered at this point 
 

Collaboration among the Cores: - The Major contribution of the Multicore Processor 

Performance is due to the number of Cores, that does parallel execution of the task. So 

performance definitely depends on the arrangement of these cores and their inter connecting bus 

for improved collaboration among the cores. Accordingly the design should provide a mechanism 

for enhanced collaboration among the cores with the help of a communication channel among the 

cores. 
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Limit of Collaboration: -In case highest collaboration is provided there will be more 

communication between the cores that becomes a overhead for the communication channel that is 

provided. 

 
What is the Limit of Amdahl’s Law: - To identify this limit of parallelization, we conducted an 

experiment that is described in [14]. 

 

4.2. Finding the Limit of Amdahl's Law 

 
With the proposed design it is possible to combat with the architectural problems in Multicore 

Processors. It is required, now to identify the Limit of Amdahl's Law for Multicore Processors. 

For this We at J.B. Institute of Engineering & Technology - Hyderabad tested the performance of 

the cluster by adding a number of nodes one after another and plotted the G Flops against Cluster 

size with HPL Benchmark [15] on PelicanHPC [16] Cluster. For more details one can refer our 

paper [14]. 

 

4.3. Important Observations 

 
The results of our experiment show that there is no improvement in speed-up after 8 cores, 

meaning that they are in line with the Amdahl’s law that predicts the maximum number of 

parallelisable Cores. This state of the processor is termed as 'The Multicore Bottleneck'. 

 

4.4. Reasons 

 
The problem is due to the communication bottleneck with the bus that connects the last level 

cache to the RAM via Cross Bar Switch, whose bandwidth is not equal to the sum of the 

bandwidths of the individual cores that connects first level caches to that off last level. 

Accordingly not all the cores can receive or send Data/Instructions simultaneously. This situation 

restricts to keep majority of the cores in idle state, in case the number of cores are increased (The 

value of N in the Amdahl’s law) in a processor makes more cores to be idle and no gain in speed-

up. In 2010 itself the amount of speed-up on average is 0.82 with N =6 cores and is expected to 

be 0.87 in 2013 with N= 32 cores and to have the remaining 12% (for 0.99) with N=infinite or 

around some thousands of cores! Is it reasonable to go for the thousand core processors, to gain 

this small amount of improvement in efficiency or speedup? 

 

5. OUR PROPOSED DESIGN OF THE MULTICORE PROCESSOR 

 
5.1. Design Objectives 

 

On the basis of our observations, we propose that processors will perform better when designed 
keeping the following points in consideration: 

 

a) A number of Cores with in the limits of Amdahl's law, 

b) Possibly largest size of Effective cache, or to make all the cache as Effective cache for all 

the Cores, 

c) L2 cache to be designed as shown in Fig. 18 so that each L2serves a  number of Cores, 

d) All the L2caches are set-associative with other L2caches, for improved collaboration 

among the cores 

e) Design at higher density of the element to facilitate more core and large sized L3cache, 
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f) Running at maximum possible Core Speed (with in the limits of power budgeting) so as 

to keep T cycle low. So as to execute a number of mnemonics in a given slot of time. 

 
Figure 6 Our Proposed Multicore Processor Architecture 

 

5.2. Advantages with the proposed design 

 
Our proposed design is a hybrid model that will take into consideration the advantages of both 

INTEL™ and AMD™ 

 

� Our design proposes the L1 cache as in  AMD™  to improve localized processing at each 

core, 

� All the  L2  caches are set-associative with other L2caches so that all the Cores can go for 

cooperative processing in the absence of multiple tasks, 

� When limited number of tasks are present, the second core attached to each L2 can be 

used for running the helper thread under Cascaded Execution policy, 

� The  L2 cache can be used as the Shadow Register for Dynamic Prefetching Thread 

Execution policy,  

� When Executing a single sequential task all the L2 and L3can be used by any core to 

accommodate a large amount of data and / or instructions in memory for the sequential 

execution performance improvement, 

� Our design proposes a Higher Density of element as in INTEL™ so as to make room for 

all three Levels of cache in the chip.  
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