

David C. Wyld et al. (Eds) : WiMo, ITCSE, ICAIT, NC - 2015

pp. 27–35, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51003

A TRIANGLE-TRIANGLE INTERSECTION

ALGORITHM

Chaman L. Sabharwal and Jennifer L. Leopold

Missouri University of Science and Technology

Rolla, Missouri, USA – 65409
{Chaman,leopoldj}@mst.edu

ABSTRACT

The intersection between 3D objects plays a prominent role in spatial reasoning, geometric

modeling and computer vision. Detection of possible intersection between objects can be based

on the objects’ triangulated boundaries, leading to computing triangle-triangle intersection.

Traditionally there are separate algorithms for cross intersection and coplanar intersection.

There is no single algorithm that can intersect both types of triangles without resorting to

special cases. Herein we present a complete design and implementation of a single algorithm

independent of the type of intersection. Additionally, this algorithm first detects, then intersects

and classifies the intersections using barycentric coordinates. This work is directly applicable to

(1) Mobile Network Computing and Spatial Reasoning, and (2) CAD/CAM geometric modeling

where curves of intersection between a pair of surfaces is required for numerical control (NC)

machines. Three experiments of the algorithm implementation are presented as a proof this

feasibility.

KEYWORDS

Intersection Detection, Geometric Modeling, Classification Predicates, Spatial Reasoning,

Triangle-Triangle Intersection.

1. INTRODUCTION

The intersection between 3D objects plays a prominent role in several areas including spatial

reasoning[1], real-time rendering [2], collision-detection, geology [3], geometric modeling

[4],and computer vision. Traditionally there are specialized algorithms for cross intersection and

coplanar intersection. The intersection detection is a byproduct of actual intersection

computations. Most of the time intersection detection should be done before the actual

intersection. For example, in qualitative spatial reasoning, intersection detection is sufficient,

actual intersection is not even needed, whereas in geometric applications like surface-surface

intersection, it is desirable to have actual intersections. For early detection of intersection, we

present a complete uniform algorithm independent of whether the triangles have cross

intersection or coplanar intersection. Herein we illustrate this with an algorithm, its Python

implementation is supported with output displayed in tables and figures. Typically, the boundary

of a3D object is represented as a triangulated surface and a triangle-triangle intersection is the

computational basis for determining intersection between objects. Since an object boundary may

28 Computer Science & Information Technology (CS & IT)

contain thousands of triangles, algorithms to speed up the intersection detection process are still

being explored for various applications, sometimes with a focus on innovations in processor

architecture[5].

In qualitative spatial reasoning, spatial relations between regions are defined axiomatically using

first order logic [6] or the 9-Intersection model [1]. It has been shown in [7] that it is sufficient to

define the spatial relations by computing 4-Intersection predicates, (namely, Interior–Interior

(IntInt), Boundary–Boundary (BndBnd), Interior–Boundary (IntBnd), and Boundary–Interior

(BndInt)) instead of 9-Intersections. In order to implement these algorithms, we must first

implement the triangle-triangle intersection determination.

In geometric modeling, the surface-surface intersection problem occurs frequently. Since a free-

form surface is represented as triangulated mesh, intersection between 3D objects amounts to

detecting and computing intersection between 3D triangles. The algorithm presented here is

extremely useful for geometric modeling where intersection between objects occurs thousands of

times. For geometric applications cross intersection is most often used to the determine curves of

intersection between surfaces [4]. Most of the approaches to these problems are based on code

optimization of same or similar cross intersection algorithms. No attempt is made to design a

single algorithm that handles both intersections simultaneously. Herein we present a new

algorithm that fills the gap.

This paper is organized as follows: Section 2 discusses the background of possible cross and

coplanar intersection between a pair of triangles. It describes the cross intersection, coplanar area

intersection algorithm, and composite algorithms for general triangles. Section 3 develops the

new generic single algorithm for triangle-triangle intersection, and classifies the intersections.

Section 4 describes implementation experiments and the timing results. Section 5describes the

two of the applications where this approach is directly applicable. Section 6concludes and

references are given in Section 7.

2. BACKGROUND: TRIANGLE-TRIANGLE INTERSECTION

There is an abundance of papers devoted to intersection between a pair of triangles

[8,9,10,11,12]. Interestingly, most of the papers concentrate on cross intersection, they simply

reinvent the algorithm and optimize the code to implement it slightly differently and more

efficiently, with no innovation. The cross intersection may result in a no intersection, a single

point intersection or a line intersection. For coplanar triangles, it can result in area intersection as

well. For coplanar intersection, such cross intersection algorithms do not work, there are separate

algorithms for area intersection [10,11,12]. In these approaches, they first try to compute the

intersection. Whether intersection is found or not, then it leads to conclude on the existence of

intersection. The paper [12]surveyed various approaches for determining the cross intersection

detection, and developed a fast vector version of the cross intersection detection, as well as

classification of the type of intersection. The papers [8] and [11] also compare hardware

implementation of their algorithm based on the number of arithmetic operations: +, -, *, /.

Another paper [10] also compares the optimized intersection times. The papers[10,11] considered

an approach for determining the intersection detection covering coplanar intersection, using edge

to edge intersections. These approaches [10,11,12] led to two separate algorithms one for cross

and one for coplanar intersection. There is no single algorithm that can handle both cross and

coplanar intersection. We present a new algorithm that is analytically different, exhaustive and

Computer Science & Information Technology (CS & IT) 29

more rigorous than the previous algorithms [8,9,10,11,12]. It computes intersection using

barycentric coordinates and vector equations very judiciously. Logical rather than computational

tests are used to detect whether the intersection is a single point, or a line or an area. This new

algorithm encompasses all cases implicitly and is different from previous ones in that we use only

one equation rather than different algorithm for each special case. We show that it is possible to

detect the existence of intersection in a uniform way before the precise intersection computations

are computed.

2.1 Specialized Intersection Methods and Algorithms

Here we describe the conventional approach to triangle-triangle intersection in terms of two

algorithms, one for cross intersection and one for coplanar intersection. Then we derive the

composite algorithm for triangle-triangle intersection. Here we give the line intersection for cross

intersection and area intersection for coplanar triangles separately and combine the two into one

algorithm as is conventionally done. Then in Section 3 we present our new algorithm, which is a

single algorithm that employs a more singular, seamless approach.

2.1.1 The Triangle-Triangle Line Intersection Algorithm

The cross intersection algorithm encompasses the single point and edge intersection cases. Here

we give a solution different from previous approaches.

Algorithm for cross intersection line Algorithm

Input: Two triangles ABC and PQR

Output: Determine if they cross intersect. Return true if they intersect, otherwise return false.

Boolean crossInt (tr1 = ABC, tr2 = PQR)

The vector equations for two triangles ABC and PQR are

 R1(u, v) = A + u U + v V, 0 ≤ u, v, u + v ≤ 1

 R2(s, t) = P + s S + t T, 0 ≤ s, t, s + t ≤ 1

where U = B-A, V = C - A, and S = Q-P, T = R – P are direction vectors along the sides of

triangles.

Let N1 =UxV, N2 =SxT be normals to the planes supporting the triangles. The triangles intersect

if there exist some barycentric coordinates (u, v) and (s, t) satisfying the equation

 A + u U + v V = P + s S + t T

Since N1xN2 ≠ 0 for cross intersecting triangles, and S and T are orthogonal to N2, the dot product

of this equation with N2 eliminates S and T from the above equation to yield

 u U•N2 + v V•N2 = AP•N2

This is the familiar equation of a line in the uv - plane for real variables u, v. The vector equation

using real parameter λ becomes

If there is a λ satisfying three equations such that 0 ≤ u, v, u + v ≤ 1, then the triangles are

ensured to intersect. The solution in λ is the range of values λm ≤ λ ≤λM for some λm and λM.

(u,v) = AP • N2

(U • N2,V • N2)

U • N2

2 +V • N2

2
+ λ(V • N2,−U • N2)

30 Computer Science & Information Technology (CS & IT)

This gives the line of intersection of uv-parameter triangle with the st-parameter plane. Similarly

the line of intersection of st-triangle with the uv-plane is computed. Then the common segment if

any is the line intersection between the two triangles, for details see [9,13].This algorithm works

only if the triangles cross intersect.

2.1.2 The Triangle-Triangle Area Intersection Algorithm

The area intersection is possible for coplanar triangles only. If the triangles ABC and PQR are

coplanar and a vertex of PQR is in the interior of ABC (or the converse is true), then an area

intersection occurs. If there is no edge-edge intersection and no vertex of one triangle is inside the

other triangle (or the converse is true), then they do not intersect, hence they are disjoint. The

input, output, method prototype and pseudocode are given below.

Algorithm for area intersection

Input: Two triangles ABC and PQR coplanar

Output: If they do not intersect, then return false otherwise return true and the intersection area.

Boolean coplanarInt (tr1 = ABC, tr2 = PQR)

The derivation of the algorithm is based on extensive use of the intersections of edges of ABC

triangle with the edges of the PQR triangle and collecting the relevant interactions to form the

area if any, for details see [11]. This algorithm can solve for intersection of coplanar triangles

only.

The classical approach is to use crossInt (tr1, tr2), algorithm from section 2.1.1, when the triangle

cross, and to use the second algorithm coplanarInt (tr1, tr2), algorithm from section 2.1.2, for

coplanar triangles.

Thus separate algorithms are used to determine intersections on case-by-case bases. There is no

single algorithm that detects intersection. We present a new single algorithm that does not depend

on case-by-case intersections.

3. ALGORITHM FOR TRIANGLE-TRIANGLE INTERSECTION

Here we present a single algorithm that is analytically different, more comprehensive, robust and

rigorous; it is implicitly capable of handling any specific type of intersection, which may be no

intersection, a single point, a segment or an area. The Triangles may be coplanar or crossing. This

single algorithm is not a modification of any previous algorithm, it is a new approach different

from the other strategies.

The Main Algorithm
Input: Two triangles ABC and PQR in 3D, triangles may be coplanar or crossing

Output: If the triangles do not intersect, return false otherwise return true and the intersection,

which may be single point, a line segment or an area.

Boolean triTriIntersection (tr1 = ABC, tr2 = PQR)

The triangles ABC and PQR are

X = A + u U + v V with U = B - A, V = C - A, 0 ≤ u, v, u + v ≤ 1

X = P + s S + t T with S = Q - P, T = R - P, 0 ≤ s, t, s + t ≤ 1

Computer Science & Information Technology (CS & IT) 31

To detect the intersection between the triangles ABC and PQR, we must attempt to solve

A + u U + v V = P + s S + t Tfor some values 0 ≤ u, v, u + v, s, t, s + t ≤ 1,

Rearranging this equation, we have

uU + v V = AP + s S + t T (1)

whereAP = P - A is a vector

To solve the equation (1) for u,v, we dot equation (1) with (UxV)xV and (UxV)xU, we quickly

get u and v as

u = - (γ•V + s α•V + t β•V)

v = γ•U + s α•U + t β•U

u + v = γ• (U - V) + s α• (U - V) + t β•(U - V)

where α, β, γ, δ are:

δ = (UxV)•(UxV),

In order to satisfy the constraints 0 ≤ u, v, u + v ≤ 1, we get three inequalities in parameters s

and t

(a) - γ•U ≤ α•U s + β•U t ≤ 1 - γ•U

(b) - 1 - γ•V ≤ α•V s + β•V t ≤ - γ•V

(c) - γ• (U - V)≤α•(U - V) s + β•(U - V) t ≤ 1- γ•(U - V)

inequalities we first eliminate t to get the possible range for s values, then solve for the range

These inequalities (a) - (c) are linear in s and t and are of the general form

 m ≤ a s + b t ≤ n

To solve these for possible t values as t(s). If there is no solution, then the algorithm returns

false. If there is a solution, then it return s, t values as

 sm ≤ s ≤ sM , tm(s) ≤ t ≤ tM(s).

This discussion is summarized and the intersection points are classified as follows:

if the algorithm returns false,

 No Intersection

elseif (sm = sM and (tm(s) = tM(s) for sm ≤ s ≤ sM)

 Single Point Intersection

elseif (sm=sMor (tm(s) = tM(s) for sm ≤ s ≤ sM)

 Line segment intersection common to two triangles

else

 Area Intersection common to two triangles

This completes the discussion of our algorithm for intersection between triangles.

α =
S × (U ×V)

δ
, β =

T × (U ×V)

δ
,γ =

AP × (U ×V)

δ

32 Computer Science & Information Technology (CS & IT)

4. EXPERIMENTAL RESULTS

The algorithm is implemented in

time it utility. Time tests were performed

Core i7). The average time for no intersection,

(1D) and area intersection (2D)

each of 22 sample triangle pairs.

nor hardware embedded, they include classification of intersections also.

proof of concept that this single integrated

data domain consists of synthetic

example, the times for no intersection are averaged over 100

for single point intersection six

used for line segment and averaged over 100 runs, and finally nine sample triangle pairs are used

and averaged. The composite average intersection time is computed. The

displayed in Table 1. We also give

intersection, a line intersection and

figures, see Fig. 1-3. The user interface a

triangle pair for intersections and it displays the corresponding

the sake of space consideration, one of

1D line segment intersections, see

displayed here.

TABLE 1. EXECUTION AVERAGE TIMES OF ALGORITHM IN SECONDS

Computer Science & Information Technology (CS & IT)

ESULTS

implemented in MacPython 3.3.3. The test time results are obtained via Python

Time tests were performed on Apple Macintosh OS X processor (2.2 GHz intel

Core i7). The average time for no intersection, single point intersection (0D), line intersection

 are measured in seconds. The program is executed

. The intersection times shown in Table 1 are neither optimized

include classification of intersections also. Times are

integrated algorithm works reliably on all triangle pairs

synthetic triangles that have every possible type of intersection. For

he times for no intersection are averaged over 100 runs with three samples

point intersection six sample pairs are averaged over 100 runs, then four samples are

used for line segment and averaged over 100 runs, and finally nine sample triangle pairs are used

and averaged. The composite average intersection time is computed. The test time

give three sample run output figures for examples of single point

intersection, a line intersection and an area intersection. The Matlab software is used to draw the

The user interface allows user to select any type of the possible triangle

intersections and it displays the corresponding triangle and the intersection

the sake of space consideration, one of the 0D (single point) intersections, see Fig. 1

, see Fig. 2; and one of 2D area intersections, see

TABLE 1. EXECUTION AVERAGE TIMES OF ALGORITHM IN SECONDS

Fig. 1. Single Point Intersection

obtained via Python

ntosh OS X processor (2.2 GHz intel

line intersection

 100 times on

are neither optimized

are shown as

triangle pairs. The test

every possible type of intersection. For

runs with three samples. Similarly

sample pairs are averaged over 100 runs, then four samples are

used for line segment and averaged over 100 runs, and finally nine sample triangle pairs are used

time statistics are

examples of single point

is used to draw the

possible triangle-

triangle and the intersection. For

Fig. 1, one of the

, see Fig. 3, are

TABLE 1. EXECUTION AVERAGE TIMES OF ALGORITHM IN SECONDS

Computer Science & Information Technology (CS & IT) 33

Fig. 2. Line Segment Intersection

Fig. 3. Area Intersection

5. APPLICATIONS OF TRIANGLE-TRIANGLE INTERSECTION

Here we describe two of the applications where triangle-triangle intersection is directly applicable

and is used extensively: qualitative spatial reasoning and geometric modeling. It is not limited to

these two applications, other applications include virtual reality, and computer vision.

5.1 Qualitative Spatial Reasoning

In Qualitative Spatial Reasoning, the spatial relations are determined by the 9-Intersection/4-

Intersection model[7, 8]. That is, for any pair of objects A and B, the interior-interior intersection

predicate, IntInt(A, B), has true or false value depending on whether the interior of A and the

interior of B intersect without regard to precise intersection. Similarly IntBnd(A, B) represents

the truth value for the intersection of the interior of A and the boundary of B, and BndBnd(A,B)

represents the predicate for the intersection of the boundaries of A and B. These four qualitative

spatial reasoning predicates are sufficient to define RCC8 spatial relations[7].

34 Computer Science & Information Technology (CS & IT)

In the application VRCC-3D+[13

will need to intersect pairs of only triangles

algorithm uses axis aligned bounding boxes (AABB) to determine the closest triangles which

may possibly intersect[13]. Table

subsequently can be used to resolve the eight RCC8 relations

oriented towards the outside of the object

associated predicate is true. If the truth test fails, then other triangles need to be tested

of triangles results in a true value, then the result is false.

TABLE 2. CHARACTERIZATION OF INTERSECTION PREDICATES

This characterizes the intersection predicates

5.2 Geometric Modeling

In geometric modeling, the

CAD/CAM, the objects are represented with

Intersection between 3D surfaces

triangles. Briefly, a pair of surfaces is subdivided using axis aligned bounding boxes (AABB)

until the surfaces are reasonably planar and boundi

triangulated and the triangles are tested for cross

intersection segments are linked together to form curves of surface

curves may be open curves, closed curves, or even a combination of both [

presented here is extremely useful for geometric modeling where intersection between objects

occurs thousands of times. For geometric applications cross intersection is most

obtain the line segment of intersection.

comprehensive surface/surface intersection algorithm

6. CONCLUSION

Herein we presented a single algorithm for

complete framework for determining and characterizing

contrast to other single track algorithms

cross or coplanar intersection using only

based on logical tests on paramet

Cartesian coordinates. Thus our algorithm

computes the intersection as a single point

The algorithm provides more information than required by spatial reasoning systems

Consequently, we hope the additional infor

presented herein will be useful in other related applications

Computer Science & Information Technology (CS & IT)

[13], the boundary of an object is already triangulated; that is, we

will need to intersect pairs of only triangles. To reduce the computational complexity, the

algorithm uses axis aligned bounding boxes (AABB) to determine the closest triangles which

Table 2 is a characterization of the intersection predicates, which

subsequently can be used to resolve the eight RCC8 relations. Here we assume all normals are

oriented towards the outside of the object. Each characterization in Table 2 describes when the

If the truth test fails, then other triangles need to be tested

of triangles results in a true value, then the result is false.

CHARACTERIZATION OF INTERSECTION PREDICATES

intersection predicates that help in resolving the RCC8 relations.

 surface-surface intersection problem occurs frequently

CAD/CAM, the objects are represented with surface boundaries using the ANSI (Brep) model.

surfaces amounts to detecting and computing intersection between 3D

Briefly, a pair of surfaces is subdivided using axis aligned bounding boxes (AABB)

until the surfaces are reasonably planar and bounding boxes intersect. Then the plane surfaces are

triangulated and the triangles are tested for cross-intersection and the intersection computed.

intersection segments are linked together to form curves of surface-surface intersection.

open curves, closed curves, or even a combination of both [4]. The algorithm

presented here is extremely useful for geometric modeling where intersection between objects

For geometric applications cross intersection is most often

line segment of intersection. Detailed analysis and implementation

/surface intersection algorithm may be found in [4].

a single algorithm for the complete design and a robust implementation of a

complete framework for determining and characterizing the triangle-triangle intersections

algorithms, this approach is a generic technique to detect any type

using only one algorithm. The classification of intersections is

on parametric coordinates rather than computational arithmetic tests

our algorithm not only detects the existence but also classifies

a single point, a line segment, or an area whichever the case may be

more information than required by spatial reasoning systems

e hope the additional information including classification of 3D intersection

presented herein will be useful in other related applications.

, the boundary of an object is already triangulated; that is, we

tational complexity, the

algorithm uses axis aligned bounding boxes (AABB) to determine the closest triangles which

is a characterization of the intersection predicates, which

Here we assume all normals are

describes when the

If the truth test fails, then other triangles need to be tested. If no pair

8 relations.

frequently. In

ANSI (Brep) model.

intersection between 3D

Briefly, a pair of surfaces is subdivided using axis aligned bounding boxes (AABB)

ng boxes intersect. Then the plane surfaces are

intersection computed. The

tersection. The

The algorithm

presented here is extremely useful for geometric modeling where intersection between objects

often used to

and implementation of the most

implementation of a

triangle intersections. In

technique to detect any type

of intersections is

rather than computational arithmetic tests in

classifies and

whichever the case may be.

more information than required by spatial reasoning systems.

3D intersection

Computer Science & Information Technology (CS & IT) 35

REFERENCES

[1] Max J. Egenhofer, R. Franzosa, Point-Set topological Relations, International Journal of Geographical

Information Systems 5(2), pp. 161 - 174, 1991.

[2] Oren Tropp, Ayellet Tal, IlanShimshoni, A fast triangle to triangle intersection test for collision

detection, Computer Animation and Virtual Worlds, Vol17 (50), pp.527 - 535, 2006.

[3] G. Caumon, Collon - Drouaillet P, Le Carlier de Veslud C, Viseur S, Sausse J (2009) Surface - based

3D modeling of geological structures. Math Geosci 41:927–945, 2009.

[4] E.G. Houghton, Emnett R.F., Factor J.D. and Sabharwal C.L., Implementation of A Divide and

Conquer Method For Surface Intersections; Computer Aided Geometric Design Vol.2, pp. 173 - 183,

1985.

[5] Ahmed H. Elsheikh, Mustafa Elsheikh, A reliable triangular mesh intersection algorithm and its

application in geological modeling, Engineering with Computers, pp.1 - 15, 2012.

[6] D. A. Randell, Z. Cui, and A.G. Cohn, A Spatial Logic Based on Regions and Connection., KR, 92,

pp. 165–176, 1992.

[7] C. Sabharwal and J. Leopold, “Reducing 9-Intersection to 4-Intersection for Identifying Relations in

Region Connection Calculus”, Proceedings of the 24th International Conference on Computer

Applications in Industry and Engineering (CAINE 2011), Honolulu, Hawaii, Nov. 16-18, 2011, pp.

118-123, 2011.

[8] Mo¨ller T. A fast triangle - triangle intersection test. Journal of Graphics Tools, 1997; 2(2): 25–30.

[9] Held M. ERIT a collection of efficient and reliable intersection tests. Journal of Graphics Tools

1997; 2(4): pp. 25–44, 1997.

[10] Badouel Didier, An Efficient Ray - Polygon Intersection, Graphics Gems (Andrew S. Glassner, ed.),

Academic Press, pp. 390 - 393, 1990.

[11] Guigue P, Devillers O. Fast and robust triangle - triangle overlap test using orientation predicates.

Journal of GraphicsTools 2003; 8 (1): pp. 25–42, 2003.

[12] Chaman Sabharwal, Jennifer Leopold, and Douglas McGeehan,:Triangle-Triangle Intersection

Determination and Classification to Support Qualitative Spatial Reasoning, Polibits, Research Journal

of Computer Science and Computer Engineering with Applications Issue 48 (July–December 2013),

pp. 13–22, 2013.

[13] N.Eloe, J. Leopold, C. Sabharwal, and Z. Yin, “Efficient Computation of Boundary Intersection and

Error Tolerance in VRCC-3D+ ”, Proceedings of the 18h International Conference on Distributed

Multimedia Systems (DMS’12), Miami, FL, Aug. 9 - 11, 2012, pp. 67 – 70, 2012.

