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ABSTRACT 

 
Persona-sized HPC clusters are widely used in many small labs, because they are cost-effective 

and easy to build. Instead of adding costly new nodes to old clusters, we may try to make use of 

some servers’ idle times by including them working independently on the same LAN, especially 

during the night. However such extension across a firewall raises not only some security 

problem with NFS but also a load balancing problem caused by heterogeneity. In this paper, we 

propose a method to solve such problems using only old techniques applicable to old systems as 

is, without requiring any upgrade for hardware or software. Some experimental results dealing 

with heterogeneity and load balancing are presented using a two-queue overflow queuing 

network problem. 
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1. INTRODUCTION 

 

The desire to get more computing power and higher reliability by orchestrating a number of low 

cost commercial off-the-shelf computers has given rise to a variety of architectures and 

configurations. A computer cluster is composed of a set of loosely or tightly coupled computers 

that are usually connected to each other through a fast LAN and work together so that they can be 

viewed as a single system in many respects. 

 

Computer clusters may be configured for different purposes. Load-balancing (LB) clusters are 

configurations in which nodes share computational workload like a web server cluster. High- 

performance computing (HPC) clusters are used for computation-intensive purposes, rather than 

handling IO-oriented operations. High-availability (HA) clusters improve the availability of the 

cluster, by having redundant nodes, which are then used to provide service when system 

components fail. 

 

Many kinds of commercial clusters are on the market. However the technologies to build similar 

systems using off-the-shelf components are widely known (e.g., see [1]), and it is easy to build a 
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low-cost personal-sized cluster [2]. Many small labs first build their own personal-sized cluster, 

and gradually grow it by adding some more dedicated nodes later. Instead, if there are some other 

nodes that are being used for other purposes on the same LAN, we may try to utilize their idle 

times as long as they are not always busy enough, especially during the night. The Berkeley 
NOW (Network of Workstations) project is one of early attempts to make use of the power of 

clustered machines on a building-wide scale [3]. However such extension gives rise to difficulties 

in security, administering the cluster, and load forecasting for optimal performance. 

 

In this paper, we deal with some technical issues in extending a personal-sized Linux cluster 

across a LAN. We do not use state-of-the-art technologies, since the sole purpose is to achieve 

our purpose using our old HPC clusters as is, with no hardware or software upgrade. Some results 

of the experiments to evaluate the system are given at the end. 

 

2. BACKGROUND 

 

2.1. HPC Cluster Middlewares 

 
An HPC cluster normally consists of the dedicated nodes that reside on a secure isolated private 

network behind a firewall. Users normally access the master/login node (master, for short) only, 

which sits in front of compute nodes (slave nodes, or slaves for short).  

 

The activities of all compute nodes are orchestrated by a cluster middleware that allows treating 

the whole cluster system via a single system image concept. Well-known HPC middlewares 

based on message passing are the Message Passing Interface (MPI) [4] and the Parallel Virtual 

Machine (PVM) [5], the former being the de facto standard. According to the standard, many 

commercial or non-commercial implementation libraries have been developed. LAM/MPI, FT-

MPI, and LA-MPI are some of widely used non-commercial libraries, and their technologies and 

resources have been combined into the on-going Open MPI project [6].  

 

All the nodes in an HPC cluster share not only executable codes but also data via NFS (Network 

File System), which is not encrypted in general. It is perfectly all right as long as the whole 

cluster nodes are on a secure local area network behind a firewall.  

 

To extend the cluster to include other nodes outside of the firewall, we will be confronted with 

some problems with security and data sharing among nodes. Moreover, such growth results in a 

heterogeneous cluster with nodes of different power, possibly running different Linux versions. 

 

2.2. File Sharing Protocols 

 
NFS, created by Sun Microsystems in 1984, is a protocol to allow file sharing between UNIX 

systems residing on a LAN. Linux NFS clients support three versions of the NFS protocol: 

NFSv2 (1989), NFSv3 (1995), and NFSv4 (2000). However the NFS protocol as is has many 

problems to use in extending the cluster, since its packets are not encrypted and due to other 

shortcomings to be discussed later. 

 

Other alternatives to NFS include AFS (Andrew File System), DFS (Distributed File System), 

RFS (Remote File System), Netware, etc. [7]. There are also various clustered file systems shared 
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by multiple servers [8]. However we do not adopt such new technologies since they are not 

supported by our old cluster. 

 

2.3. SSH Tunnelling 

 
Encryption of NFS traffic is necessary for secure extension across a firewall. One of the common 

techniques that are ordinarily used is known as cryptographically protected tunnelling. An IP-

level or TCP-level stream of packets is used to tunnel application-layer segments [9]. A TCP 

tunnel is a technology that aggregates and transfers packets between two hosts as a single TCP 

connection. By using a TCP tunnel, several protocols can be transparently transmitted through a 

firewall. Under certain conditions, it is known that the use of a TCP tunnel severely degrades the 

end-to-end TCP performance, which is called TCP meltdown problem [10].  

 

The SSH protocol allows any client and server programs to communicate securely over an 

insecure network. Furthermore, it allows tunnelling (port forwarding) of any TCP connection on 

top of SSH, so as to cryptographically protect any application that uses clear-text protocols. 

 

3. EXTENSION OF AN HPC CLUSTER 

 
We would like to extend our old cluster to include some other nodes across the firewall, as shown 

in Figure 1. In general, the master node has attached storage that is accessible by diskless slave 

nodes using insecure NFS. Since NFS relies on the inherently insecure unencrypted UDP 

protocol (up to NFSv3), IP spoofing is possible. Moreover, firewall configuration is difficult 

because of the way NFS daemons work. 

 
 

Figure 1. Cluster extension to include the non-dedicated node EXT across a firewall. 

 

3.1. Fixing NFS Ports for SSH Tunnelling 
 

SSH tunnelling, which makes use of SSH port forwarding, is widely used to encrypt some 

unencrypted packets or to bypass firewalls, e.g., see [9,11]. SSH tunnels support only TCP 

protocols of fixed ports, but NFS uses UDP protocols by default, and the ports of some daemons 

essential for the operation of NFS are variable. 

 

Fortunately NFS over TCP protocols are also supported from the Linux kernel 2.4 and later on 

the NFS client side, and from the kernel 2.4.19 on the server side [12]. Since all the nodes of our 

cluster satisfy this condition, we can make NFS work over TCP by specifying the option "-o tcp" 

in the mounting command. The following is an example of mounting server’s /nfs_dir directory 

on the client’s mount_pt. 

 



52  Computer Science & Information Technology (CS & IT) 

 

# mount  -t nfs  -o tcp  server:/nfs_dir   mount_pt 

 

The daemons essential for NFS operation are 2 kinds. Portmapper (port 111) and rpc.nfsd (port 

2049) use fixed ports, but rpc.statd, rpc.lockd, rpc.mountd, and rpc.rquotad use ports that are 

randomly assigned by the operating system. However the ports of the latter can be fixed by 

specifying port numbers in appropriate configuration files [13]. 

 

The ports of the first three can be fixed by adding the following lines in the NFS configuration 

file /etc/sysconfig/nfs, for example, 

 

STATD_PORT=4001 

LOCKD_TCPPORT=4002 

LOCKD_UDPPORT=4002 

MOUNTD_PORT=4003 

 

The rest ports can be fixed by defining new port numbers in /etc/services, for example  

 

rquotad 4004/tcp 

rquotad 4004/u에 

 

3.2. Setting up an SSH Tunnel 
 

For tunnelling of NFS, it is necessary for the server to mount its own NFS directory to be 

exported to clients. Hence on the server side, the configuration file /etc/exports has to be 

modified, for example, for exporting /nfs_dir, 

 

/nfs_dir    localhost (sync,rw,insecure,root_squash) 

 

where “insecure” means it allows connection from ports higher than 1023, and “root_squash” 

means it squashes the root permissions for the client and denies root access to access/create files 

on the NFS server for security. 

 

On the client side, to forward the ports 10000 and 20000, for example, to the fixed ports 2049 

(rpc.nfsd) and 4003 (rpc.mountd), respectively, we can use the command 

 

# ssh nfssvr -L 10000:localhost:2049  -L 20000:localhost:4003 -f sleep 600m 

 

where "nfssvr" is the IP or the name of the NFS server registered in /etc/hosts, and "-f sleep 

600m" means that port forwarding is to last for 600 minutes in the background. 

 

Once connected to the NFS server, an SSH tunnel will be open if the correct password is entered. 

Then the NFS server’s export directory can be mounted on the client’s side. The following 

command is an example to mount the /nfs_dir directory of the NFS server on the /client_dir 

directory of the client. 

 

# mount -t nfs -o tcp,hard,intr,port=10000, mountport=20000 localhost:/client_dir 
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4. DEALING WITH HETEROGENEITY 

 
Data partitioning and load balancing are important components in parallel computation. Since 

earlier works (e.g., see [14]), many authors have studied load balancing using different strategies 

on dedicated/non-dedicated heterogeneous systems [15,16,17,18], but it is nearly impossible to 

find works on the security problems arising in cluster expansion, which is more technical rather 

than academic. 

 

Even though the original tightly-coupled HPC cluster may be homogeneous, the extended cluster 

inevitably will behave like a heterogeneous system. First, the power of the newly added node 

EXT may be different and its workload may change continually since it is not a dedicate node. In 

addition, the communication speed between the node EXT and the original cluster is slower than 

that among the original cluster nodes. Hence we need to use a dynamic run-time load balancing 

strategy [19], while assigning equal amount of work to the nodes of the original cluster. 

 
4.1. The Sample Problem 
 

Strategies of dynamic load balancing depend on problems, and we need introduce the problem we 

consider first. We deal with the old famous two-queue overflow queuing problem given by the 

Kolmogorov balance equation  
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where pi,j is the steady-state probability distribution giving the probability that there are ij 

customers in the j-th queue. It is assumed that, in the i-th queue, there are si parallel servers and 

ni-si-1 waiting spaces, and customers enter the i-th queue with mean arrival rate λi, and depart at 

the mean rate µi. The model allows overflow from the first queue to the second queue if the first 

queue is full. The total number of possible states is n1×n2.  

 

It is known that no analytic solution exists, and the balance equation has to be solved explicitly. 

We can write the discrete equation as a singular linear system, say 0A =x where x is the vector 

consisting of all states pi,j’s. Even for systems with relatively small numbers of queues, waiting 

spaces, and servers per queue, the size of the resulting matrix is huge. The numbers of waiting 

spaces in our problem are 200 and 100 in each queue, respectively, and the resulting matrix size 

is 20,000ⅹ20,000. 

 

4.2. Job Assignment by Domain Decomposition 

 

The graph of the resulting matrix of a k-queue problem is the same as the graph of the matrix 

corresponding to the k-dimensional Laplacian operator. Thus the graph of the matrix A is a two-

dimensional rectangular grid. 

 

As an example, Figure 1.a) shows the grid of a two-queue overflow model with 9ⅹ5 = 45 states, 

where each dot corresponds to some state pi,j, i=1,2,…9 and j=1,2….5. If we use 3 computation 

nodes, we may assign 15 grid points to each node. However to compute the values at boundary 
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points (in vertical dotted boxes), each node needs the values at the boundary points computed by 

adjacent nodes. As a result, node 0 and node 2 should have enough memory to store 20 grid 

points (or 4 vertical grid lines) and node 2 needs to store 25 grid points (or 5 vertical grid lines), 

even though each node updates only 15 grid points (or 3 vertical grid lines). The extra grid points 

are to store the values to be received from adjacent nodes. 

 

Figure 1.b) shows partitioning of the corresponding matrix A of size 45ⅹ45, each submatrix Ai 

being of size 5ⅹ45. For better load balancing, workload will be assigned in units of one vertical 

line (that corresponds to the computation with one submatrix Ai). Since we deal with a huge 

matrix problem of size 20,000ⅹ20,000, one unit workload is computation with 100ⅹ20,000 

submatrix. 

 

 
        a)                                                   b) 

 

Figure 2.  Examples showing a) job assignment to 3 nodes, and b) matrix partitioning 

for a 9ⅹ5 = 45 state two-queue overflow queuing model. 

 

To solve the singular system 0A =x , we use a splitting method A=D-C where D is the diagonal 

matrix that consists of all diagonal entries of A, and C=D-A. Then we can rewrite D C=x x  

which leads to a convergent eigenvalue problem 1
D C

− =x x . For convergence test, we use the 

size of the residual defined by 

 
1

2 2   2|| r || || ( ) ||   where || || 1.I D C
−= − =x x  

 

4.3. Communication for Asynchronous Iteration 

 
In normal synchronous parallel computation, each node updates the values of the grid points 

assigned to it in lockstep fashion, so that it can give the same solution as that of serial 

computation. During computation, each node should communicate with its adjacent nodes to 

exchange boundary point values, and all nodes should synchronize computation.  
 

The workload of the added node EXT may change dynamically all the time, and it is 

unpredictable and uncontrollable. If the node EXT is busy doing some other jobs, it cannot 

communicate with its adjacent nodes in time, degrading overall performance by making all other 

nodes wait. 
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Asynchronous algorithms appear naturally in parallel systems and are heavily exploited 

applications.Allowing nodes to operate in an asynchronous manner simplifies the implementation 

of parallel algorithms and eliminates the overhead associated with synchronization. Since 1990’s, 

some theories on asynchronous iteration has been developed, e.g., see [20]. Fortunately, the 

matrix A in our problem satisfies the necessary condition for a matrix to satisfy for convergence. 

Hence we adopt asynchronous iteration freely, but we need some more work for implementation 

details. 
 

We assume the master node is always alive and is not busy so that it can immediately handle 

communication with other nodes. Data exchange between two adjacent nodes should be done 

through the master node, and the master node should keep the most current values of all grid 

points. But all communication should be initiated by compute nodes (including the added non-

dedicate nodes), and the master node should just respond according to compute nodes’ request. 
 

Figure 3 is the master’s algorithm using MPI functions to handle other nodes’ request. The 

master continually checks if any message has arrived from any other nodes by calling the 

MPI_Iprobe( ) function. If there is any message arrived, it then identifies the sender, tag, and 

sometimes the number of data received. Based on the tag received, the master takes some 

appropriate action. For example, if the received tag is 1000, it means “Receive the boundary data 

I send, and send the boundary data I need.”, etc. Then any compute node can continue its work 

without delay. 

 

 
 

Figure 3.  A master’s algorithm to handle compute nodes’ request. 

 

We also adopt a dynamic load balancing strategy by measuring the time interval between two 

consecutive data requests by the same node. It is necessary only for non-dedicated nodes, since 

the others are dedicated and have the same computational power. The workload of the non-

dedicated node is reduced if 

N t
n

T
α<  

where N is the average workload (in units of the number of vertical grid lines), T is the average 

time interval between two consecutive data requests by the same dedicated node, t is the time 

interval between two requests of EXT, and α is some tolerance parameter less than 1 (we used 

0.8). Similarly, the workload of the non-dedicate node is increased if 

N t
n

T
β>  
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for some β (we used 1.2). 

 

In adjusting workloads, we used a simpler strategy. That is, when one of these conditions is 

satisfied, we just decrease/increase two boundary grid lines of EXT and assigned them to/from 

adjacent nodes. For this, to each non-dedicated node, we assigned the grid region which is 

between the two regions assigned to dedicated nodes. It takes very little time to re-assign grid 

lines to some other node, since our matrix is very sparse (just 5 nonzero entries in each row) and 

can be generated by each node instantly whenever necessary. 

 

5. PERFORMANCE TESTS 

 
Our old cluster we want to extend has 2 nodes each with dual 1GHz Pentium 3 Xeon processors 

running Fedora Core 4, with LAM/MPI v.7.1.2 installed. The nodes are interconnected via a 

Gigabit LAN, and NFS is used for file sharing. The non-dedicated node EXT which sits on the 

outside fast Ethernet has a 2.4 GHz Intel® Core™ i5 CPU with 8 GB memory, and runs on 

Fedora 13. 

 

The performance of the NFS through an SSH tunnel will inevitably drop due to encryption 

overhead. Tests were performed between the master node and the node EXT, using UDP or TCP, 

and with or without an SSH tunnel across the firewall. The times it took to read or write a file of 

size 1GB from EXT were measured, at varying NFS block sizes. Since 

NFSSVC_MAXBLKSIZE (maximum block size) of the NFS in Fedora Core 4 is 32*1024 (see 

/usr/src/kernels/2.6.11-1.1369_FC4-i686/include/linux/nfsd/const.h), tests were performed at 

block sizes of 4k, 8k, 16k, and 32k, respectively, 3 times for each and they are averaged. In 

addition, to delete any remaining data in cache, NFS file system was manually unmounted and 

mounted again between tests. 

 

The following are example commands that first measure the time taken to create the file 

/home/testfile of size 1GB on the NFS server and read it using block size 16KB. 

 

# time dd if=/dev/zero of=/home/testfile bs=16k count=65536 

# time dd if=/home/testfile of=/dev/null bs=16k 

 

The results of the NFS performance test, with or without SSH tunnelling are given in Table 1. For 

the common NFS without tunnelling, the figures in parentheses are the times it took when TCP is 

used, and others are when UDP is used. 

 

As we see, the larger the NFS block size, the faster in all cases. For the common NFS without 

SSH tunnelling, write operation using UDP is slightly faster than TCP, but it is not the case for 

read operation. Moreover the NFS with SSH tunnelling takes 3.9%-10.1% more time for write 

and 1.4-4.3% more for read, than the common NFS using UDP. 

 

As long as the NFS block size is taken as large as possible, the tunnelling overhead may not be 

large even though NFS service is done through SSH tunnelling, since the non-dedicated nodes 

outside of the firewall need not read or write so often through NFS, which is common in high 

performance parallel computing. 
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Table 1. Performance of NFS, with or without SSH tunnelling (sec) 

 

Block 

size 

Common NFS SSH tunnelled 

Read Write Read Write 

4K 
96.12 

(95.31) 

119.37 

(120.95) 
100.29 131.45 

8K 
95.07 

(94.43) 

115.74 

(120.31) 
98.12 122.13 

16K 
93.85 

(92.21) 

114.70 

(118.32) 
95.31 121.72 

32K 
92.51 

(91.45) 

112.35 

(115.87) 
93.89 116.83 

 

Figure 4 shows the comparison results. The solid line marked with 1 is the synchronous 

computation result using only the dedicated nodes of our old cluster which has 4 cores in total. 

The dotted line marked with 2 is the result when we add the node EXT (we created just 1 process 

on EXT). The residual and elapsed time were checked every time the first slave reports the 

intermediate result. The running times to converge to the result with residual size less than  10
-5

 

were 956.75 sec for curve 1 and 854.14 sec for curve 2, respectively. Hence the speedup by the 

added EXT node is 1.12. 

 

 
 

Figure 4.  Comparison results. 

 

The result is somewhat disappointing, since the speed of the CPU core on EXT is at least twice as 

fast as that of the old cluster. Probably it is mainly due to much slower network speed between 

the cluster and the node EXT and the extra workload for some other jobs.  

 

6. CONCLUSIONS 

 
Personal-sized HPC clusters are widely used in many small labs, because they are easy to build, 

cost-effective, and easy to grow. Instead of adding costly new nodes, we can extend clusters to 

include some other servers on the same LAN, so that we can make use of their idle times. 
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However, unlike a tightly-coupled HPC cluster behind a firewall, the resulting system suffers a 

security problem with NFS which is vital for HPC clusters. 

 

Of course there are many new good solutions using recent technologies. However we do adopt 

such strategy, because they require upgrade of hardwares and/or softwares including an operating 

system. Instead we devise a solution using SSH tunnelling, which can be applied to the old 

system as is. Probably this approach may be helpful to many of small home-made cluster 

systems. We also devised a dynamic load balancing method which is based on domain 

decomposition and asynchronous iteration, using a two-queue overflow queuing network problem 

of matrix size 20,000ⅹ20,000. The speedup obtained by using one extra process on a much 

faster non-dedicated node is somewhat disappointing, mainly because of the slow fast Ethernet 

speed between the cluster and the extra node. We expect much higher speedup if the outer 

network is upgraded. 
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