
 

David C. Wyld et al. (Eds) : ACITY, DPPR, VLSI, WiMNET, AIAA, CNDC - 2015 

pp. 163–178, 2015. © CS & IT-CSCP 2015                                                    DOI : 10.5121/csit.2015.51315 

 

DROIDSWAN: DETECTING MALICIOUS 

ANDROID APPLICATIONS BASED ON 

STATIC FEATURE ANALYSIS 

 

Babu Rajesh V, Phaninder Reddy, Himanshu P and Mahesh U Patil 

 
Centre for Development of Advanced Computing 

cdac.in 

 

ABSTRACT 

 

Android being a widely used mobile platform has witnessed an increase in the number of 

malicious samples on its market place. The availability of multiple sources for downloading 

applications has also contributed to users falling prey to malicious applications. Classification 

of an Android application as malicious or benign remains a challenge as malicious applications 

maneuver to pose themselves as benign. This paper presents an approach which extracts 

various features from Android Application Package file (APK) using static analysis and 

subsequently classifies using machine learning techniques. The contribution of this work 

includes deriving, extracting and analyzing crucial features of Android applications that aid in 

efficient classification. The analysis is carried out using various machine learning algorithms 

with both weighted and non-weighted approaches. It was observed that weighted approach 

depicts higher detection rates using fewer features. Random Forest algorithm exhibited high 

detection rate and shows the least false positive rate. 
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1. INTRODUCTION 
 

Android is a widely used mobile platform and due to it's dominance in consumer space, Android 

becomes a lucrative target for malware developers who are exploiting the popularity and 

openness of Android platform for various benefits. Malware developers use Android 

marketplaces as entry points for hosting thesir malicious applications into the android user space. 

According to RiskIQ [1] report, malicious applications in Play store have grown by 388 percent 

from 2011 to 2013, while the number of such applications removed annually by Google has 

dropped from 60 percent in 2011 to 23 percent in 2013. As a large number of applications are 

uploaded and updated regularly on these market places, Manual analysis of all the applications is 

difficult task. Scarcity of effective mechanisms to detect these malicious samples has fueled the 

rise of malware applications on Android market places. In this regard we present DroidSwan, a 

system for classifying applications as malware or benign, based on static analysis of Android 

APK. DroidSwan extracts various crucial features from an Android application, assigns weight to 

these features and builds a classifier model using machine learning algorithms. The classifier 

model is trained using the malware data set of 1260 malware acquired from Genome Malware 
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Project [2] and popular benign applications obtained from Google Play Store. The model was 

then tested against 500 malware samples obtained from Virustotal malware intelligence service 

[3].  

 

Android applications are installed on to a device using an Android application package (APK) 

file. In our analysis, This APK file is disassembled for extraction of necessary features which 

form feature set to be used during classification. Figure 1 depicts how features are extracted from 

an APK. The application resources such as XML layout-definition files and images are stored in 

the 'res' directory which the malware writers use to inject malicious binaries like '.sh', '.elf' or 

'.exe' inside the images or other resource files used by the application. In most of the cases, these 

malicious binaries are found embedded within image files (.jpg and .png) used by the application. 

The AndroidManifest.xml file contains the name, version number and access rights of the APK. 

AndroidManifest.xml is a binary XML file. ApkParser [4] can be used to convert this binary 

XML file into a readable XML file. A malware application  may hide some of the permission it 

uses by not declaring them in the Manifest file. 

 

 
 

Figure 1.  Feature extraction in DroidSwan 

 

2. RELATED WORK 
 

Androguard [5] statically extracts features from APK, but this tool shows high false positive rate 

as 80 out of 100 popular benign samples analyzed were assigned high androrisk score. Aubrey-

Derrick Schmidt et al. [6] extracted function calls of an installed application using readelf 

command. These function calls were later compared with function calls of the malware 

executables present on a Remote Detection Server. In contrast to this, our approach does not 

analyze applications on an Android device because of limited resources like power, memory and 

data usage, but if needed it can be ported onto a mobile device. DroidRanger [7] detects 
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malicious applications of known malware families in popular Android marketplaces using 

permission-based behavioral foot printing. To detect malware from unknown families, 

DroidRanger uses heuristic-based filtering scheme. The drawback of DroidRanger is the 

requirement of manual operations while analyzing and collecting behavior of applications. 

 

DroidMat [8] combines static and dynamic analysis approaches. It extracts features like 

permissions and intents using static analysis and API calls using dynamic analysis. In contrast to 

this, we perform static analysis to extract all the necessary features as a tool based on static 

analysis can be deployed on a gateway device with greater ease as compared to tool based on 

dynamic analysis. Adrieene et al. [9] proposed an approach to identify over privileged 

applications by comparing API calls invoked with permissions declared in the Manifest.  William 

Enck et al. [10] proposed an approach where a certificate is generated during an application's 

installation. This certificate gives complete information about the application by rating them 

using Kirin security rules which are based on the combinations of permissions extracted from 

Manifest file. DroidAnalytics [11] is a signature based system for detecting repackaged 

applications. The drawback of this technique is it requires large and balanced data set of malware 

and benign samples. Shabtai et al. [12] applied machine learning classifier techniques like 

decision tree, Naive Bayes (NB), Bayesian Networks (BN) etc. to classify Android applications 

as games and utilities citing the non availability of malware applications.  

 

They collected around 22,000 features initially and later reduced to 50 features for the purpose of 

classification. Our approach uses 24 features for classification. 

 

3. APPROACH 
 

This section explains our approach. The following subsections describe feature selection for 

feature set, weight assignment to the features, selection of feature vector and finally the working 

of DroidSwan. 

 

3.1. Features 
 

3.1.1. Suspicious Permissions and Permission Combinations 
 

A permission is a restriction limiting the  access of an application to the device to protect critical 

data and code that could be misused to distort or damage the user experience. We considered the 

patterns of suspicious permissions in malware samples as discovered by Y.Zhou et.al. [13]. For 

extracting permissions used by an application we use APKParser tool. The permissions extracted 

were analyzed  and cross verified for high occurrence across malware samples available in our 

training dataset. Out of all the permissions specified as suspicious by Y.Zhou et.al, we discarded 

those permissions which were present in large numbers in benign samples as these would not 

significantly contribute during classification process. The presence or absence of the remaining 

suspicious permissions was then considered as a feature. Our findings are shown in Figure 2. 

 

I.Rassameeroj [14] states that certain permission combinations enable an application to perform 

dangerous actions posing threat to user's data and privacy. We considered these combinations as 

features for our feature set. Table 1 depicts the permissions and permission combinations 

considered as features. 
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Figure 2.  Frequency of suspicious permissions among malware samples 

 

3.1.2. Suspicious API Combinations 
 

APIs used by an application determines the actual functionality and capability of the application. 

Static analysis of APIs used in an application hence becomes important to understand what the 

application actually intends to do. In the similar direction of selecting permissions as features, our 

approach contributes by evaluating APIs extensively used by malware applications. APIs were 

broadly classified according to their usage by the application. From the list of APIs which are 

found in large number of malware samples, combinations were derived which could pose a threat 

to the user. Two main types of threats considered are financial losses and leakage of user's 

personal information. For example APIs for accessing user's personal information (network 

details, device ID, line number, etc.) in combination with APIs for sending SMS enables an 

application to transmit user's personal information to a predefined source. This leads to both 

breach of privacy as well as monetary loss. The monetary loss here is due to cost incurred when 

the SMS is sent.\par APIs for evaluation are extracted by disassembling classes.dex file using 

dexdump tool present in Android SDK [15]. Figure 3 depicts the a snapshot of classes.dex when 

disassembled using dexdump tool. Table 2 lists the API combinations considered as a feature for 

our feature set. 

 

 
Figure 3.  Disassembled dex file 
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3.1.3. Manifest Violation 
 

All the permissions required by an application should be declared in the AndroidManifest.xml. 

These permissions determine what are all the capabilities the application has. During application 

installation, all the permissions declared by the application are not cross verified by the package 

manager. Thus, at the run time if the application needs to perform a certain action and it does not 

have corresponding permission, run time exceptions occur. Malware developers take advantage 

of this flaw to perform collusion attacks [16]. The collusion attack requires at least 2 applications 

to work in collaboration. In this type of attack, an over privileged application provides an under 

privileged application with necessary permissions at runtime. Soundcomber [17] is one such 

application which aims at collecting user's information by capturing audio from device's 

microphone and then sends it over the network with help of another application having necessary 

permissions. Figure 4 depicts a scenario where two applications combine their permissions to 

read contacts and send them over the network. 

 

 
 

Figure 4.  A collusion attack scenario 

 

One way to detect the possibility of collusion attack is to look for application which has declared 

more permissions than what it requires (over privileged applications), but the drawback with this 

approach is the high false positive rate. The reason for high false positive rate is that many 

developers declare majority of the permissions available irrespective of their usage by the 

application. 

 

We devised a different approach for detecting possible collusion attack. Rather than looking for 

over privileged applications we detect under privileged applications, that is the application 

declaring less permissions than what it actually required. The under privileged application then 

gets required privileges at runtime with the help of another application. To detect under 

privileged applications applications, we look for the permissions that will be used by the 

application at run time but are not present in application's manifest file. To derive permissions 

required by application at run time, permission required for executing each API present in 

application's dex file is extracted. If any permission required for execution of an API is not found 

in the application's manifest file, it is considered as a manifest violation. 

 

We derive the permissions required by an API with the help of Android's developer guide and 

Pscout [18]. 
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Each occurrence of manifest violation is assigned a weight of 7. A summation of these 

permission's weights was considered as the weight of the feature (Manifest violation). 

 

3.1.4. Suspicious Content URI 

 

A content URI (used for data access) can be called suspicious if by using that URI an application 

can leak user's personal data or can access another application's data. For example, an application 

can get access to contacts by using URI: content://com.Android.contacts. Such suspicious URIs 

were identified and their presence was checked among various malware and benign samples 

available in the training set. Suspicious content URIs which were detected in most of the malware 

samples and few benign samples were considered as a feature for feature set. Figure 5 shows the 

content URIs extensively used by malware applications. 

 

 
 

Figure 5. Frequency of suspicious content URIs among malware samples 

 

To collect the content URIs used by the application, we parse the dalvik bytecode of 

disassembled classes.dex. The presence of content URIs that provide access to MMS, Browser 

and telephony data were seen among majority of malware applications. 

 

Each Suspicious Content URI was assigned a weight of 6. Summation of the weights for 

frequency of such suspicious content URIs is considered as the weight of the feature. 

 

3.1.5. Detection of Executable code 

 

Embedding malicious code into documents has been successful technique for distributing 

malware. Desktop malware like Pidief, ZBOT, SillyD have been distributed as malicious PDF, 

JPEG, mp3 files. Based on Shafiq [19] and Stolfo's [20] findings which stated that detection of 

embedded malware requires parsing the bytecode of the documents, We employed a mechanism 

to find embedded executables by parsing the bytecode of all the files present in the resources 

directory of an APK. Many malware samples show the presence of executables and shell scripts 

embedded within image and music files. Presence of image files embedded with executable code 

can be found in samples from malware families like DroidKungFu1 and RougePush. Malware 

samples from DroidKungFu3 and GingerMaster families show presence of music files embedded 

with executable code.\par As this behavior was detected only in malware samples, presence of 

embedded executables was assigned a maximum weight of 10. Summation of the weights for 

frequency of such files is considered as weight of the feature. 
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3.2. Assigning Weight to Features 
 

The weight assigned to a feature represents the impact that presence or absence feature makes on 

an application's classification. Weights are assigned to each feature on a scale of 1 to 10 using 

heuristics based approach such that higher the weight of a feature, more the feature contributes 

during classification. The highest weight of 10 was assigned to presence of executables 

embedded in image or music files. Presence of embedded executables is the strongest indicator in 

our feature set of an application being malicious as only malware samples are found to have 

resource files injected with executable code. All other features were assigned weights relative to 

the weight of 'presence of embedded executables' feature. Manifest violations are assigned a 

weight of 7. This is because unlike a malicious application, a benign application declares all the 

permissions being used. When compared to 'suspicious Permission combinations' or 'suspicious 

API combinations', 'manifest violation' has more impact during classification but it is not as 

influential as 'presence of embedded executables'. Thus it is assigned a weight lower than 

'presence of embedded executables' and higher than 'suspicious Permission combinations' and 

'suspicious API combinations'. Presence of suspicious content URI in an application is assigned a 

weight of 6. The presence of these content URI was seen in both malicious and benign samples, 

but number of malicious samples containing these URIs was much greater than number of benign 

samples. Weights for suspicious content URIs, manifest violations, presence of executable code 

are frequency based. Thus the total weight for these features in the feature set is multiple of the 

frequency of the feature occurrence and the weight assigned to the feature. \par Permission 

combinations and API combinations are assigned a moderate weight of 5 as the presence of these 

leads to suspicious behaviors, but their presence cannot conclude an application of being a 

malware or benign. We assigned suspicious permissions the lowest weight of 3 as these 

permissions can be found in large number in both benign and malware samples. Table 3 depicts 

the assignment of weights to the features selected. 

 

3.3. Feature Vector Selection 
 

After deciding upon the application's attributes to be considered as features, we considered and 

evaluated three categories of feature vectors with a set of machine learning algorithms. All the 

three categories of feature vectors constituted of similar features, but represented in different 

way. The first and second categories of feature vectors were weighted feature vector where as the 

third category was a non weighted feature vector. The first category of feature vector contained 

weights for each feature along with the Euclidean distance as an additional feature. The second 

category of feature vector was derived by excluding Euclidean distance from the first feature 

vector. For the third category of feature vector, rather than considering the frequency and weight 

of a feature, we check only presence of a feature. Representation in feature vector is done as 

either 1 or 0 to depict the presence or absence of a specific feature in the sample. 

 

 

3.3.1. Evaluation of model for Feature Vector Selection 
 

K-fold cross validation was carried out in order to evaluate the efficiency of the classification 

model. The default implementation of cross validation provided by WEKA was used for this 

purpose. The efficiency of the classifier models generated using all three categories of feature 

vectors were compared based on cross validation. One round of cross-validation of a two class 

classifier model involves segregating a sample of the training data set into two complementary 
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subsets, subset for performing the analysis (the training set) and subset for validating the analysis 

(the validation set). Inconsistency is reduced by multiple rounds of cross-validation using 

different segregations. Finally the average of all validation results is presented as true positive 

rate and false positive rate. We used WEKA [21] implementation for both model generation and 

cross validation. The true positive rate and false positive rate are deduced as follows : 

 

TPR=

TP

TP+FN
 

FPR=

FP

FP+TN
 

 

Figure 6 (a) and Figure 6 (b) show variations in true positive rates and variations in false positive 

rates respectively for models generated using three categories of feature vectors. 

 

 

 
 

Figure 6. Variation inTPR (a) and FPR (b) for various models 
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High true positive and low false positive rates are observed for the second category of feature 

vector, that is a feature vector with weights and excluding Euclidean distance. Thus the second 

category of feature vector was considered for providing features to the machine learning 

algorithms. The reason for omitting Euclidean distance from the feature set was its last rank 

among the features on applying Chi-Square attribute ranking mechanism. This illustrated that 

excluding it as a feature would not affect the detection rates. Figure 7 shows variation in 

Euclidean distance across all the samples present in our dataset. 

 

 
Figure 7. Variation in ED scores among benign and malware samples 

 

Figure 8 shows the receiver operating characteristic (ROC) graph for the classification model 

built using second category of feature set. This graph illustrates the performance of a binary 

classifier system built using various machine learning algorithms and the weighted feature set. 

Random Forest algorithm depicts the maximum ROC space in the ROC curve which proves that 

for the given training set, classifier model built using Random Forest is more efficient than 

models generated using other machine learning algorithms. We used model built using Random 

Forest algorithm as the classifier in DroidSwan implementation. 

 

 
 

Figure 8. ROC Curve for classifier models based on various algorithms 
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3.4. DroidSwan working 
 

Working of DroidSwan is carried out in two phases. Phase1 is the knowledge building phase. In 

this phase, DroidSwan extracts specific features and builds feature set of all the samples from the 

training set. These feature sets are then provided to the machine learning algorithm using WEKA 

implementation of machine learning algorithms. A two class classifier model is thus generated. 

\par Classifier model generated during phase 1 can be used for classification of samples without 

updating the model every time a new sample is provided for analysis. 

 

Phase2 is the classification phase. In this phase, features are extracted from test application which 

needs to be classified and a corresponding feature set is built. Now this feature set is provided to 

the classification model generated during phase 1. The classification model then classifies the 

sample as either malicious or benign and generates a Json report for the same. This output report 

contains details regarding the presence or absence of all the features under consideration. The 

report also specifies all the suspicious content URIs and embedded executables present in the 

application. Figure 9 depicts DroidSwan's architecture. 

 

 
Figure 9. DroidSwan architecture 

 

4. RESULTS 
 

The efficiency of DrooidSwan classification model was tested by analyzing 500 malware samples 

obtained from Virustotal malware intelligence service \cite{hispasec2011virustotal} and 800 

benign samples from ApkDrawer \cite{apkDrawer}. Collectively these samples constituted of our 

test-set. It was verified beforehand that the test-set does not contain any samples in common with 

the training-set by comparing the hashcode of each sample in test set against hashcodes of 

samples from training set. Figure 10 and Figure 11 depict the detection rates of malware samples 

and benign samples respectively by using DroidSwan. 
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Figure 10. Detection rate of DroiidSwan for malware samples 

 

 
 

Figure 11. Detection rate of DroiidSwan for benign samples 

 

The detection rate of DroidSwan was compared with the detection rates of four other antivirus 

solutions for the same set of malware samples. Figure 12 shows the detection rate of DroidSwan 

in comparison with Kaspersky (version 12.0.0.1225) [23], McAfee (version 6.0.5.614) [24], 

Avast (version 8.0.1489.320) [25] and TrendMicro (version 9.740.0.1012) [26]. 

 

 
 

Figure 12. Detection rates of DroiidSwan in comparison with other AV solutions 
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Recall rate of DroidSwan with Random Forest based classifier for malwares from various 

malware families is shown in Figure 13. 

 

5. CONCLUSION 
 

We present DroidSwan, an approach for detecting malicious Android applications wholly based 

on static analysis of their respective APK files. The process of classification comprises of 

extracting 24 features, assigning weights to the features and finally using the collection of feature 

weights as a feature set. The feature set along with Random Forest classifier model is then used 

to classify the given sample as either malware or benign.\par We observed that classifier model 

built using Random Forest shows higher TPR and lower FPR when compared to other machine 

learning algorithms. 

 

 
 

Figure 13. Recall rate of DroidSwan for various malware families 
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APPENDIX 
 

Table 1.  Suspicious permissions and permission combinations 

 

Suspicious permissions and  permission combinations Weight assigned 

READ SMS 3 

WRITE SMS 3 

RECEIVE SMS 3 

WRITE CONTACTS 3 

WRITE APN SETTINGS 3 

SEND SMS 3 

ONLY INTERNET 3 

ONLY WRITE EXTERNAL STORAGE 3 

WRITE SMS and RECEIVE SMS 5 

SEND SMS and WRITE SMS 5 

INTERNET and WRITE EXTERNAL STORAGE 5 

INTERNET,RECORD AUDIO, READ PHONE STATEand MODIFY PHONE 

STATE 

5 

ACCESS FINE LOCATION or ACCESS COARSE LOCATION, 

RECEIVE BOOT COMPLETED and INTERNET 

5 

INTERNET,RECORD AUDIO and PROCESS OUTGOING CALLS 5 

 

Table 2.  Suspicious API combinations 

 

Suspicious API combinations Weight assigned 

"landroid/telephony/telephonymanager;.getdeviceid" 

"landroid/location/locationmanager;.getlastknownlocation" 

"landroid/location/location;.getlatitude" 

"landroid/location/location;.getlongitude" 

"landroid/telephony/smsmanager;.sendtextmessage" 

"landroid/net/uri;.parse","landroid/location/locationmanager;.getbestprovider" 

5 

"ljava/net/urlencoder;.encode" 

"ljava/net/uri;.getquery" 

"ljava/net/httpurlconnection;.connect" 

"ljava/net/httpurlconnection;.geturl" 

"ljava/net/httpurlconnection;.getheaderfield" 

"landroid/location/locationmanager;.getbestprovider" 

"landroid/location/location;.getlatitude" 

"landroid/location/location;.getlongitude" 

"landroid/telephony/gsm/smsmanager;.sendtextmessage" 

5 

"landroid/net/uri;.parse" 

"landroid/content/contentresolver;.query" 

"landroid/database/cursor;.movetonext" 

"landroid/database/cursor;.getcolumnindex" 

5 
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"landroid/database/cursor;.getstring" 

"landroid/database/cursor;.close" 

"landroid/database/cursor;.movetolast" 

"landroid/database/cursor;.movetoprevious" 

"landroid/net/uri;.parse" 

"ljava/net/urlencoder;.encode" 

"ljava/net/url;.openstream" 

"landroid/telephony/telephonymanager;.getdeviceid" 

"landroid/telephony/telephonymanager;.getline1number" 

"landroid/telephony/telephonymanager;.getnetworkcountryiso" 

"landroid/telephony/telephonymanager;.getnetworkoperatorname" 

"ljava/io/bufferedreader;.readline" 

"landroid/content/pm/packagemanager;.hassystemfeature" 

5 

"ljava/net/inetaddress;.getlocalhost" 

"ljava/net/inetaddress;.gethostname" 

"ljava/net/url;.openstream" 

"ljava/net/inetaddress;.getbyname" 

"ljava/net/inetaddress;.equals" 

"ljava/net/inetaddress;.hashcode" 

"landroid/net/uri;.parse" 

"landroid/telephony/smsmanager;.getdefault" 

"landroid/telephony/smsmanager;.dividemessage" 

"landroid/telephony/smsmanager;.sendtextmessage" 

"landroid/telephony/telephonymanager;.getdeviceid" 

"landroid/telephony/telephonymanager;.listen" 

5 

"ljava/net/urlencoder;.encode" 

"ljava/net/uri;.<init>" 

"landroid/location/location;.hasaccuracy" 

"landroid/location/location;.distanceto" 

"landroid/location/location;.gettime" 

"landroid/location/location;.getaccuracy" 

"landroid/location/location;.getlatitude" 

"landroid/location/location;.getlongitude" 

"landroid/location/location;.getprovider" 

"landroid/location/locationmanager;.requestlocationupdates" 

"landroid/location/location;.<init>" 

"landroid/location/location;.setaccuracy" 

5 

"ljava/net/urlencoder;.encode" 

"ljava/net/url;.<init>" 

"ljava/net/url;.openconnection" 

"landroid/telephony/telephonymanager;.getline1number" 

"landroid/telephony/smsmanager;.getdefault" 

"landroid/telephony/smsmanager;.sendtextmessage" 

"landroid/telephony/smsmessage;.getdisplayoriginatingaddress" 

"landroid/telephony/smsmessage;.getmessagebody" 

"landroid/telephony/smsmessage;.createfrompdu" 

5 
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Table 3.  Weight assignment to various features 

 

Feature type Weight assigned 

Suspicious permissions 3 

Suspicious permission  combinations 5 

Suspicious API combinations 5 

Suspicious content URI 6 

Manifest violation 7 

Presence of executable 10 
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