

David C. Wyld et al. (Eds) : ACITY, DPPR, VLSI, WiMNET, AIAA, CNDC - 2015

pp. 163–178, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51315

DROIDSWAN: DETECTING MALICIOUS

ANDROID APPLICATIONS BASED ON

STATIC FEATURE ANALYSIS

Babu Rajesh V, Phaninder Reddy, Himanshu P and Mahesh U Patil

Centre for Development of Advanced Computing

cdac.in

ABSTRACT

Android being a widely used mobile platform has witnessed an increase in the number of

malicious samples on its market place. The availability of multiple sources for downloading

applications has also contributed to users falling prey to malicious applications. Classification

of an Android application as malicious or benign remains a challenge as malicious applications

maneuver to pose themselves as benign. This paper presents an approach which extracts

various features from Android Application Package file (APK) using static analysis and

subsequently classifies using machine learning techniques. The contribution of this work

includes deriving, extracting and analyzing crucial features of Android applications that aid in

efficient classification. The analysis is carried out using various machine learning algorithms

with both weighted and non-weighted approaches. It was observed that weighted approach

depicts higher detection rates using fewer features. Random Forest algorithm exhibited high

detection rate and shows the least false positive rate.

KEYWORDS

Mobile Security, Malware, Static Analysis, Machine Learning, Android

1. INTRODUCTION

Android is a widely used mobile platform and due to it's dominance in consumer space, Android

becomes a lucrative target for malware developers who are exploiting the popularity and

openness of Android platform for various benefits. Malware developers use Android

marketplaces as entry points for hosting thesir malicious applications into the android user space.

According to RiskIQ [1] report, malicious applications in Play store have grown by 388 percent

from 2011 to 2013, while the number of such applications removed annually by Google has

dropped from 60 percent in 2011 to 23 percent in 2013. As a large number of applications are

uploaded and updated regularly on these market places, Manual analysis of all the applications is

difficult task. Scarcity of effective mechanisms to detect these malicious samples has fueled the

rise of malware applications on Android market places. In this regard we present DroidSwan, a

system for classifying applications as malware or benign, based on static analysis of Android

APK. DroidSwan extracts various crucial features from an Android application, assigns weight to

these features and builds a classifier model using machine learning algorithms. The classifier

model is trained using the malware data set of 1260 malware acquired from Genome Malware

164 Computer Science & Information Technology (CS & IT)

Project [2] and popular benign applications obtained from Google Play Store. The model was

then tested against 500 malware samples obtained from Virustotal malware intelligence service

[3].

Android applications are installed on to a device using an Android application package (APK)

file. In our analysis, This APK file is disassembled for extraction of necessary features which

form feature set to be used during classification. Figure 1 depicts how features are extracted from

an APK. The application resources such as XML layout-definition files and images are stored in

the 'res' directory which the malware writers use to inject malicious binaries like '.sh', '.elf' or

'.exe' inside the images or other resource files used by the application. In most of the cases, these

malicious binaries are found embedded within image files (.jpg and .png) used by the application.

The AndroidManifest.xml file contains the name, version number and access rights of the APK.

AndroidManifest.xml is a binary XML file. ApkParser [4] can be used to convert this binary

XML file into a readable XML file. A malware application may hide some of the permission it

uses by not declaring them in the Manifest file.

Figure 1. Feature extraction in DroidSwan

2. RELATED WORK

Androguard [5] statically extracts features from APK, but this tool shows high false positive rate

as 80 out of 100 popular benign samples analyzed were assigned high androrisk score. Aubrey-

Derrick Schmidt et al. [6] extracted function calls of an installed application using readelf

command. These function calls were later compared with function calls of the malware

executables present on a Remote Detection Server. In contrast to this, our approach does not

analyze applications on an Android device because of limited resources like power, memory and

data usage, but if needed it can be ported onto a mobile device. DroidRanger [7] detects

Computer Science & Information Technology (CS & IT) 165

malicious applications of known malware families in popular Android marketplaces using

permission-based behavioral foot printing. To detect malware from unknown families,

DroidRanger uses heuristic-based filtering scheme. The drawback of DroidRanger is the

requirement of manual operations while analyzing and collecting behavior of applications.

DroidMat [8] combines static and dynamic analysis approaches. It extracts features like

permissions and intents using static analysis and API calls using dynamic analysis. In contrast to

this, we perform static analysis to extract all the necessary features as a tool based on static

analysis can be deployed on a gateway device with greater ease as compared to tool based on

dynamic analysis. Adrieene et al. [9] proposed an approach to identify over privileged

applications by comparing API calls invoked with permissions declared in the Manifest. William

Enck et al. [10] proposed an approach where a certificate is generated during an application's

installation. This certificate gives complete information about the application by rating them

using Kirin security rules which are based on the combinations of permissions extracted from

Manifest file. DroidAnalytics [11] is a signature based system for detecting repackaged

applications. The drawback of this technique is it requires large and balanced data set of malware

and benign samples. Shabtai et al. [12] applied machine learning classifier techniques like

decision tree, Naive Bayes (NB), Bayesian Networks (BN) etc. to classify Android applications

as games and utilities citing the non availability of malware applications.

They collected around 22,000 features initially and later reduced to 50 features for the purpose of

classification. Our approach uses 24 features for classification.

3. APPROACH

This section explains our approach. The following subsections describe feature selection for

feature set, weight assignment to the features, selection of feature vector and finally the working

of DroidSwan.

3.1. Features

3.1.1. Suspicious Permissions and Permission Combinations

A permission is a restriction limiting the access of an application to the device to protect critical

data and code that could be misused to distort or damage the user experience. We considered the

patterns of suspicious permissions in malware samples as discovered by Y.Zhou et.al. [13]. For

extracting permissions used by an application we use APKParser tool. The permissions extracted

were analyzed and cross verified for high occurrence across malware samples available in our

training dataset. Out of all the permissions specified as suspicious by Y.Zhou et.al, we discarded

those permissions which were present in large numbers in benign samples as these would not

significantly contribute during classification process. The presence or absence of the remaining

suspicious permissions was then considered as a feature. Our findings are shown in Figure 2.

I.Rassameeroj [14] states that certain permission combinations enable an application to perform

dangerous actions posing threat to user's data and privacy. We considered these combinations as

features for our feature set. Table 1 depicts the permissions and permission combinations

considered as features.

166 Computer Science & Information Technology (CS & IT)

Figure 2. Frequency of suspicious permissions among malware samples

3.1.2. Suspicious API Combinations

APIs used by an application determines the actual functionality and capability of the application.

Static analysis of APIs used in an application hence becomes important to understand what the

application actually intends to do. In the similar direction of selecting permissions as features, our

approach contributes by evaluating APIs extensively used by malware applications. APIs were

broadly classified according to their usage by the application. From the list of APIs which are

found in large number of malware samples, combinations were derived which could pose a threat

to the user. Two main types of threats considered are financial losses and leakage of user's

personal information. For example APIs for accessing user's personal information (network

details, device ID, line number, etc.) in combination with APIs for sending SMS enables an

application to transmit user's personal information to a predefined source. This leads to both

breach of privacy as well as monetary loss. The monetary loss here is due to cost incurred when

the SMS is sent.\par APIs for evaluation are extracted by disassembling classes.dex file using

dexdump tool present in Android SDK [15]. Figure 3 depicts the a snapshot of classes.dex when

disassembled using dexdump tool. Table 2 lists the API combinations considered as a feature for

our feature set.

Figure 3. Disassembled dex file

Computer Science & Information Technology (CS & IT) 167

3.1.3. Manifest Violation

All the permissions required by an application should be declared in the AndroidManifest.xml.

These permissions determine what are all the capabilities the application has. During application

installation, all the permissions declared by the application are not cross verified by the package

manager. Thus, at the run time if the application needs to perform a certain action and it does not

have corresponding permission, run time exceptions occur. Malware developers take advantage

of this flaw to perform collusion attacks [16]. The collusion attack requires at least 2 applications

to work in collaboration. In this type of attack, an over privileged application provides an under

privileged application with necessary permissions at runtime. Soundcomber [17] is one such

application which aims at collecting user's information by capturing audio from device's

microphone and then sends it over the network with help of another application having necessary

permissions. Figure 4 depicts a scenario where two applications combine their permissions to

read contacts and send them over the network.

Figure 4. A collusion attack scenario

One way to detect the possibility of collusion attack is to look for application which has declared

more permissions than what it requires (over privileged applications), but the drawback with this

approach is the high false positive rate. The reason for high false positive rate is that many

developers declare majority of the permissions available irrespective of their usage by the

application.

We devised a different approach for detecting possible collusion attack. Rather than looking for

over privileged applications we detect under privileged applications, that is the application

declaring less permissions than what it actually required. The under privileged application then

gets required privileges at runtime with the help of another application. To detect under

privileged applications applications, we look for the permissions that will be used by the

application at run time but are not present in application's manifest file. To derive permissions

required by application at run time, permission required for executing each API present in

application's dex file is extracted. If any permission required for execution of an API is not found

in the application's manifest file, it is considered as a manifest violation.

We derive the permissions required by an API with the help of Android's developer guide and

Pscout [18].

168 Computer Science & Information Technology (CS & IT)

Each occurrence of manifest violation is assigned a weight of 7. A summation of these

permission's weights was considered as the weight of the feature (Manifest violation).

3.1.4. Suspicious Content URI

A content URI (used for data access) can be called suspicious if by using that URI an application

can leak user's personal data or can access another application's data. For example, an application

can get access to contacts by using URI: content://com.Android.contacts. Such suspicious URIs

were identified and their presence was checked among various malware and benign samples

available in the training set. Suspicious content URIs which were detected in most of the malware

samples and few benign samples were considered as a feature for feature set. Figure 5 shows the

content URIs extensively used by malware applications.

Figure 5. Frequency of suspicious content URIs among malware samples

To collect the content URIs used by the application, we parse the dalvik bytecode of

disassembled classes.dex. The presence of content URIs that provide access to MMS, Browser

and telephony data were seen among majority of malware applications.

Each Suspicious Content URI was assigned a weight of 6. Summation of the weights for

frequency of such suspicious content URIs is considered as the weight of the feature.

3.1.5. Detection of Executable code

Embedding malicious code into documents has been successful technique for distributing

malware. Desktop malware like Pidief, ZBOT, SillyD have been distributed as malicious PDF,

JPEG, mp3 files. Based on Shafiq [19] and Stolfo's [20] findings which stated that detection of

embedded malware requires parsing the bytecode of the documents, We employed a mechanism

to find embedded executables by parsing the bytecode of all the files present in the resources

directory of an APK. Many malware samples show the presence of executables and shell scripts

embedded within image and music files. Presence of image files embedded with executable code

can be found in samples from malware families like DroidKungFu1 and RougePush. Malware

samples from DroidKungFu3 and GingerMaster families show presence of music files embedded

with executable code.\par As this behavior was detected only in malware samples, presence of

embedded executables was assigned a maximum weight of 10. Summation of the weights for

frequency of such files is considered as weight of the feature.

Computer Science & Information Technology (CS & IT) 169

3.2. Assigning Weight to Features

The weight assigned to a feature represents the impact that presence or absence feature makes on

an application's classification. Weights are assigned to each feature on a scale of 1 to 10 using

heuristics based approach such that higher the weight of a feature, more the feature contributes

during classification. The highest weight of 10 was assigned to presence of executables

embedded in image or music files. Presence of embedded executables is the strongest indicator in

our feature set of an application being malicious as only malware samples are found to have

resource files injected with executable code. All other features were assigned weights relative to

the weight of 'presence of embedded executables' feature. Manifest violations are assigned a

weight of 7. This is because unlike a malicious application, a benign application declares all the

permissions being used. When compared to 'suspicious Permission combinations' or 'suspicious

API combinations', 'manifest violation' has more impact during classification but it is not as

influential as 'presence of embedded executables'. Thus it is assigned a weight lower than

'presence of embedded executables' and higher than 'suspicious Permission combinations' and

'suspicious API combinations'. Presence of suspicious content URI in an application is assigned a

weight of 6. The presence of these content URI was seen in both malicious and benign samples,

but number of malicious samples containing these URIs was much greater than number of benign

samples. Weights for suspicious content URIs, manifest violations, presence of executable code

are frequency based. Thus the total weight for these features in the feature set is multiple of the

frequency of the feature occurrence and the weight assigned to the feature. \par Permission

combinations and API combinations are assigned a moderate weight of 5 as the presence of these

leads to suspicious behaviors, but their presence cannot conclude an application of being a

malware or benign. We assigned suspicious permissions the lowest weight of 3 as these

permissions can be found in large number in both benign and malware samples. Table 3 depicts

the assignment of weights to the features selected.

3.3. Feature Vector Selection

After deciding upon the application's attributes to be considered as features, we considered and

evaluated three categories of feature vectors with a set of machine learning algorithms. All the

three categories of feature vectors constituted of similar features, but represented in different

way. The first and second categories of feature vectors were weighted feature vector where as the

third category was a non weighted feature vector. The first category of feature vector contained

weights for each feature along with the Euclidean distance as an additional feature. The second

category of feature vector was derived by excluding Euclidean distance from the first feature

vector. For the third category of feature vector, rather than considering the frequency and weight

of a feature, we check only presence of a feature. Representation in feature vector is done as

either 1 or 0 to depict the presence or absence of a specific feature in the sample.

3.3.1. Evaluation of model for Feature Vector Selection

K-fold cross validation was carried out in order to evaluate the efficiency of the classification

model. The default implementation of cross validation provided by WEKA was used for this

purpose. The efficiency of the classifier models generated using all three categories of feature

vectors were compared based on cross validation. One round of cross-validation of a two class

classifier model involves segregating a sample of the training data set into two complementary

170 Computer Science & Information Technology (CS & IT)

subsets, subset for performing the analysis (the training set) and subset for validating the analysis

(the validation set). Inconsistency is reduced by multiple rounds of cross-validation using

different segregations. Finally the average of all validation results is presented as true positive

rate and false positive rate. We used WEKA [21] implementation for both model generation and

cross validation. The true positive rate and false positive rate are deduced as follows :

TPR=

TP

TP+FN

FPR=

FP

FP+TN

Figure 6 (a) and Figure 6 (b) show variations in true positive rates and variations in false positive

rates respectively for models generated using three categories of feature vectors.

Figure 6. Variation inTPR (a) and FPR (b) for various models

Computer Science & Information Technology (CS & IT) 171

High true positive and low false positive rates are observed for the second category of feature

vector, that is a feature vector with weights and excluding Euclidean distance. Thus the second

category of feature vector was considered for providing features to the machine learning

algorithms. The reason for omitting Euclidean distance from the feature set was its last rank

among the features on applying Chi-Square attribute ranking mechanism. This illustrated that

excluding it as a feature would not affect the detection rates. Figure 7 shows variation in

Euclidean distance across all the samples present in our dataset.

Figure 7. Variation in ED scores among benign and malware samples

Figure 8 shows the receiver operating characteristic (ROC) graph for the classification model

built using second category of feature set. This graph illustrates the performance of a binary

classifier system built using various machine learning algorithms and the weighted feature set.

Random Forest algorithm depicts the maximum ROC space in the ROC curve which proves that

for the given training set, classifier model built using Random Forest is more efficient than

models generated using other machine learning algorithms. We used model built using Random

Forest algorithm as the classifier in DroidSwan implementation.

Figure 8. ROC Curve for classifier models based on various algorithms

172 Computer Science & Information Technology (CS & IT)

3.4. DroidSwan working

Working of DroidSwan is carried out in two phases. Phase1 is the knowledge building phase. In

this phase, DroidSwan extracts specific features and builds feature set of all the samples from the

training set. These feature sets are then provided to the machine learning algorithm using WEKA

implementation of machine learning algorithms. A two class classifier model is thus generated.

\par Classifier model generated during phase 1 can be used for classification of samples without

updating the model every time a new sample is provided for analysis.

Phase2 is the classification phase. In this phase, features are extracted from test application which

needs to be classified and a corresponding feature set is built. Now this feature set is provided to

the classification model generated during phase 1. The classification model then classifies the

sample as either malicious or benign and generates a Json report for the same. This output report

contains details regarding the presence or absence of all the features under consideration. The

report also specifies all the suspicious content URIs and embedded executables present in the

application. Figure 9 depicts DroidSwan's architecture.

Figure 9. DroidSwan architecture

4. RESULTS

The efficiency of DrooidSwan classification model was tested by analyzing 500 malware samples

obtained from Virustotal malware intelligence service \cite{hispasec2011virustotal} and 800

benign samples from ApkDrawer \cite{apkDrawer}. Collectively these samples constituted of our

test-set. It was verified beforehand that the test-set does not contain any samples in common with

the training-set by comparing the hashcode of each sample in test set against hashcodes of

samples from training set. Figure 10 and Figure 11 depict the detection rates of malware samples

and benign samples respectively by using DroidSwan.

Computer Science & Information Technology (CS & IT) 173

Figure 10. Detection rate of DroiidSwan for malware samples

Figure 11. Detection rate of DroiidSwan for benign samples

The detection rate of DroidSwan was compared with the detection rates of four other antivirus

solutions for the same set of malware samples. Figure 12 shows the detection rate of DroidSwan

in comparison with Kaspersky (version 12.0.0.1225) [23], McAfee (version 6.0.5.614) [24],

Avast (version 8.0.1489.320) [25] and TrendMicro (version 9.740.0.1012) [26].

Figure 12. Detection rates of DroiidSwan in comparison with other AV solutions

174 Computer Science & Information Technology (CS & IT)

Recall rate of DroidSwan with Random Forest based classifier for malwares from various

malware families is shown in Figure 13.

5. CONCLUSION

We present DroidSwan, an approach for detecting malicious Android applications wholly based

on static analysis of their respective APK files. The process of classification comprises of

extracting 24 features, assigning weights to the features and finally using the collection of feature

weights as a feature set. The feature set along with Random Forest classifier model is then used

to classify the given sample as either malware or benign.\par We observed that classifier model

built using Random Forest shows higher TPR and lower FPR when compared to other machine

learning algorithms.

Figure 13. Recall rate of DroidSwan for various malware families

REFERENCES

[1] RiskIQ, Feb 19 2014, Research Also Shows Steady and Significant Drop in Number of Malicious

Apps Being Removed in Past Three Years. Available: http://www.riskiq.com/company/press-

releases/riskiqreports-malicious-mobile-apps-google-play-have-spiked-nearly-400

[2] Genome Project. Android malware samples. http://www.malgenomeproject.org.

[3] S. Hispasec Sistemas. Virustotal malware intelligence service, 2011.

[4] J. Erdfelt. Apkparser tool. https://code.google.com/p/xml-apk-parser.

[5] A. Desnos. Androguard. Available at https://code.google.com/p/androguard/.

[6] Schmidt, A-D., Rainer Bye, H-G. Schmidt, Jan Clausen, Osman Kiraz, Kamer A. Yuksel, Seyit

Ahmet Camtepe, and Sahin Albayrak. ”Static analysis of executables for collaborative malware

detection on android.” In Communications, 2009. ICC’09. IEEE International Conference on, pp. 1-

5. IEEE, 2009.

[7] Zhou, Yajin, Zhi Wang, Wu Zhou, and Xuxian Jiang. ”Hey, You, Get Off of My Market: Detecting

Malicious Apps in Official and Alternative Android Markets.” In NDSS. 2012.

[8] Wu, Dong-Jie, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and KuoPing Wu. ”Droidmat: Android

malware detection through manifest and API calls tracing.”In Information Security (Asia JCIS),

2012 Seventh Asia Joint Conference on, pp. 62-69. IEEE, 2012.

Computer Science & Information Technology (CS & IT) 175

[9] Felt, Adrienne Porter, et al. ”Android permissions demystified.”Proceedings of the 18th ACM

conference on Computer and communications security. ACM, 2011.

[10] Enck William, Machigar Ongtang, and Patrick McDaniel. ”On lightweight mobile phone application

certification.” Proceedings of the 16th ACM conference on Computer and communications security.

ACM, 2009.

[11] Zheng, Min, Mingshen Sun, and John Lui. ”Droid Analytics: A Signature Based Analytic System to

Collect, Extract, Analyze and Associate Android Malware.” Trust, Security and Privacy in

Computing and Communications (TrustCom), 2013 12th IEEE International Conference on IEEE,

2013.

[12] Shabtai, Asaf, Yuval Fledel, and Yuval Elovici. "Automated static code analysis for classifying

Android applications using machine learning." Computational Intelligence and Security (CIS), 2010

International Conference on. IEEE, 2010.

[13] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution."

Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012.

[14] Rassameeroj, Ittipon, and Yuzuru Tanahashi. "Various approaches in analyzing Android applications

with its permission-based security models." Electro/Information Technology (EIT), 2011 IEEE

International Conference on. IEEE, 2011.

[15] Google Inc. Official Page for android developers. http://developer.android.com.

[16] Bugiel, Sven, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and

Bhargava Shastry. "Towards Taming Privilege-Escalation Attacks on Android." In NDSS. 2012.

[17] Schlegel, Roman and Zhang, Kehuan and Zhou, Xiao-yong and Intwala, Mehool and Kapadia, Apu

and Wang, XiaoFeng. 'Soundcomber: A Stealthy and Context-Aware Sound Trojan for

Smartphones.'NDSS, 2011

[18] Au, Kathy Wain Yee, Yi Fan Zhou, Zhen Huang, and David Lie. "Pscout: analyzing the android

permission specification." In Proceedings of the 2012 ACM conference on Computer and

communications security, pp. 217-228. ACM, 2012.

[19] Shafiq, M. Zubair, Syed Ali Khayam, and Muddassar Farooq. "Embedded malware detection using

markov n-grams." In Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 88-107.

Springer Berlin Heidelberg, 2008.

[20] Stolfo, Salvatore J., Ke Wang, and Wei-Jen Li. ”Towards stealthy malware detection.” Malware

Detection. Springer US, 2007. 231-249.

[21] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.

Witten. ”The WEKA data mining software: an update.” ACM SIGKDD explorations newsletter 11,

no. 1 (2009): 10-18.

[22] Z. Jay. Apkdrawer.com. http://www.apkdrawer.com.

[23] Kaspersky mobile security. Available at http://www.kaspersky.co.in/downloads/android-security.

[24] Mcafee mobile security. Available at https://www.mcafeemobilesecurity.com/.

[25] Avast mobile security. Available at http://www.avast.com/en-in/free-mobile-security.

[26] Trendmicro mobile security. Available at http://www.trendmicro.com/us/enterprise/product-

security/mobile-security/.

176 Computer Science & Information Technology (CS & IT)

APPENDIX

Table 1. Suspicious permissions and permission combinations

Suspicious permissions and permission combinations Weight assigned

READ SMS 3

WRITE SMS 3

RECEIVE SMS 3

WRITE CONTACTS 3

WRITE APN SETTINGS 3

SEND SMS 3

ONLY INTERNET 3

ONLY WRITE EXTERNAL STORAGE 3

WRITE SMS and RECEIVE SMS 5

SEND SMS and WRITE SMS 5

INTERNET and WRITE EXTERNAL STORAGE 5

INTERNET,RECORD AUDIO, READ PHONE STATEand MODIFY PHONE

STATE

5

ACCESS FINE LOCATION or ACCESS COARSE LOCATION,

RECEIVE BOOT COMPLETED and INTERNET

5

INTERNET,RECORD AUDIO and PROCESS OUTGOING CALLS 5

Table 2. Suspicious API combinations

Suspicious API combinations Weight assigned

"landroid/telephony/telephonymanager;.getdeviceid"

"landroid/location/locationmanager;.getlastknownlocation"

"landroid/location/location;.getlatitude"

"landroid/location/location;.getlongitude"

"landroid/telephony/smsmanager;.sendtextmessage"

"landroid/net/uri;.parse","landroid/location/locationmanager;.getbestprovider"

5

"ljava/net/urlencoder;.encode"

"ljava/net/uri;.getquery"

"ljava/net/httpurlconnection;.connect"

"ljava/net/httpurlconnection;.geturl"

"ljava/net/httpurlconnection;.getheaderfield"

"landroid/location/locationmanager;.getbestprovider"

"landroid/location/location;.getlatitude"

"landroid/location/location;.getlongitude"

"landroid/telephony/gsm/smsmanager;.sendtextmessage"

5

"landroid/net/uri;.parse"

"landroid/content/contentresolver;.query"

"landroid/database/cursor;.movetonext"

"landroid/database/cursor;.getcolumnindex"

5

Computer Science & Information Technology (CS & IT) 177

"landroid/database/cursor;.getstring"

"landroid/database/cursor;.close"

"landroid/database/cursor;.movetolast"

"landroid/database/cursor;.movetoprevious"

"landroid/net/uri;.parse"

"ljava/net/urlencoder;.encode"

"ljava/net/url;.openstream"

"landroid/telephony/telephonymanager;.getdeviceid"

"landroid/telephony/telephonymanager;.getline1number"

"landroid/telephony/telephonymanager;.getnetworkcountryiso"

"landroid/telephony/telephonymanager;.getnetworkoperatorname"

"ljava/io/bufferedreader;.readline"

"landroid/content/pm/packagemanager;.hassystemfeature"

5

"ljava/net/inetaddress;.getlocalhost"

"ljava/net/inetaddress;.gethostname"

"ljava/net/url;.openstream"

"ljava/net/inetaddress;.getbyname"

"ljava/net/inetaddress;.equals"

"ljava/net/inetaddress;.hashcode"

"landroid/net/uri;.parse"

"landroid/telephony/smsmanager;.getdefault"

"landroid/telephony/smsmanager;.dividemessage"

"landroid/telephony/smsmanager;.sendtextmessage"

"landroid/telephony/telephonymanager;.getdeviceid"

"landroid/telephony/telephonymanager;.listen"

5

"ljava/net/urlencoder;.encode"

"ljava/net/uri;.<init>"

"landroid/location/location;.hasaccuracy"

"landroid/location/location;.distanceto"

"landroid/location/location;.gettime"

"landroid/location/location;.getaccuracy"

"landroid/location/location;.getlatitude"

"landroid/location/location;.getlongitude"

"landroid/location/location;.getprovider"

"landroid/location/locationmanager;.requestlocationupdates"

"landroid/location/location;.<init>"

"landroid/location/location;.setaccuracy"

5

"ljava/net/urlencoder;.encode"

"ljava/net/url;.<init>"

"ljava/net/url;.openconnection"

"landroid/telephony/telephonymanager;.getline1number"

"landroid/telephony/smsmanager;.getdefault"

"landroid/telephony/smsmanager;.sendtextmessage"

"landroid/telephony/smsmessage;.getdisplayoriginatingaddress"

"landroid/telephony/smsmessage;.getmessagebody"

"landroid/telephony/smsmessage;.createfrompdu"

5

178 Computer Science & Information Technology (CS & IT)

Table 3. Weight assignment to various features

Feature type Weight assigned

Suspicious permissions 3

Suspicious permission combinations 5

Suspicious API combinations 5

Suspicious content URI 6

Manifest violation 7

Presence of executable 10

AUTHORS

Babu Rajesh V has been working for three years in the field of mobile security and

malware analysis. His areas of interests include mobile security and embedded security.

Phaninder Reddy has been working for two years in the field of mobile security and

malware analysis. His areas of interests include machine learning and data analytics.

Himanshu Pareek has around six years of experience in developing and design of

security solutions related to small sized networks. He has research papers published on

topics like malware detection based on behavior and application modeling.

Mahesh U Patil received master degree in electronics and communication. Presently he is

working as Principal Technical Officer at Centre for Development of Advanced

Computing. His research interests include Mobile Security and Embedded Systems.

