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ABSTRACT 

In view of the inherent defects in current airport surface surveillance system, this paper 

proposes an asynchronous target-perceiving-event driven surface target surveillance scheme 

based on the geomagnetic sensor technology. Furthermore, a surface target tracking and 

prediction algorithm based on I-IMM is given, which is improved on the basis of IMM 

algorithm in the following aspects: Weighted sum is performed on the mean of residual errors 

and model probabilistic likelihood function is reconstructed, thus increasing the identification 

of a true motion model; Fixed model transition probability is updated with model posterior 

information, thus accelerating model switching as well as increasing the identification of a 

model. In the period when a target is non-perceptible, prediction of target trajectories can be 

implemented through the target motion model identified with I-IMM algorithm. Simulation 

results indicate that I-IMM algorithm is more effective and advantageous in comparison with 

the standard IMM algorithm. 
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1. INTRODUCTION 

 
Encountering increasingly serious problems regarding safety and efficiency on the airport 

surface, ICAO proposed an Advanced Surface Movement Guidance and Control System (A-

SMGCS) 
[1]

. The system performs surveillance, routing, guidance and control on a moving target 

using various sensor technologies, wherein surveillance is defined as the most important function 

in A-SMGCS
[2]

. 

At present, surface surveillance is mainly implemented through surface surveillance radar (SMR), 

automatic dependent surveillance (ADS) and multilateration (MLAT) and other surveillance 
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devices. These three systems, however, have the following inherent defects: (1) SMR is 

susceptible to factors like building block, ground clutters and weather; (2) MALT and ADS can 

only monitor a target equipped with a transponder, but not a non-cooperative target on the 

surface; (3) These three surveillance approaches feature in low trajectory update rate, 

communication delay and high cost. The study of surface moving surveillance system based on 

event-driven non-cooperative can fundamentally solve the above-mentioned defects. Honeywell 

developed a dual infrared/magnetic sensor, and thousands of such sensors are equipped at airports 

for detection of the aircraft 
[3]

. Chartier et al. proposed that the position of the aircraft could be 

determined though the information of coil sensor installed on the boundary of the airfield 

pavement segmentation
[4]

. K. Dimitropoulos et al. proposed to detect a magnetic target using a 

magnetic sensor network
[5]

. Schonefeld J et al. conducted comprehensive analysis on the 

performance of runway intrusion prevention system, XL-RIAS, based on distributed sensors, and 

testified that the response rate thereof is faster than that of ASDE-X 
[6]

. 

Trajectory tracking and prediction of a target on the airport surface is a main function of the 

surface surveillance system. Two main trajectory tracking and prediction algorithms are studied. 

One is algorithm based on parameter identification in aircraft dynamics and kinemics models, 

wherein Gong studied taxing velocity and acceleration characteristics of the aircraft, and obtained 

kinematics trajectory model using regression analysis 
[7]

; Capoozi et al. analyzed historical data 

of surface surveillance and excavated parameters of kinematics equation model 
[8]

; Rabah W et 

al. employed high-gain observer and variable structure control method to perform output 

feedback tracking on nonlinear system, with effects of tracking uncertain system being 

undesirable
[9]

. Another is algorithm based on optimal estimation theory, wherein conventional 

Kalman filters like -α β  and - -α β γ are single model tracking algorithms, which are not suitable 

for the variety and uncertainty of target motion on the surface
[10]

; Farina et al. applied the 

restricted information to IMM model set self-adaption in consideration of peculiarity of a target 

motion on the airport surface, thus improving the tracking precision 
[11]

; Gong Shuli et al. applied 

VS-IMM algorithm to the surface target tracking in combination with the airport map 
[12]

. 

In order to solve the inherent defects in SMR, ADS and MLAT, an asynchronous target-

perceiving-event driven surface moving target surveillance scheme based on the geomagnetic 

sensor technology is proposed in this paper. In this scheme, geomagnetic detection nodes are 

deployed in the center of the runway/taxiway, thereby the target position can be accurately 

perceived as well as the real-time velocity being obtained as a target passes through the nodes. 

However, the node deployment density is low, causing the continuous motion state of a moving 

target in the adjacent nodes not to be perceived. Regarding such problems, this paper presents a 

new algorithm I-IMM, in which the likelihood function of IMM algorithm is improved to 

increase the identification of a true motion model. Furthermore, motion model switching is 

accelerated and model identification is improved through modification of state transition 

probability for self-adaption using posterior information. In the period when the motion state of a 

target is not perceptible, memory tracking and prediction on target trajectories can be 

implemented through the target motion model identified with I-IMM algorithm, combined with 

the final self-adapting state transition probability in the perceptible period. 
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2. SURFACE TARGET SURVEILLANCE SCHEME BASED ON GEO- 

MAGNETIC SENSOR TECHNOLOGY 

 

2.1. Surface target surveillance scheme 

 
In general, moving targets on the airport surface comprise aircraft and special vehicles, which are 

relatively large ferromagnetic objects, generating disturbance to the surrounding magnetic field 

during their moving, thereby targets can be detected by the geomagnetic sensor with an 

anisotropic magnetoresistance effect according to the disturbance
[13]

. Combination of 

geomagnetic sensor and event-driven wireless sensor network can achieve high precision, small 

volume, low cost, no need for wiring and deployment flexibility, without affecting the surface 

surveillance performance. The surface moving target surveillance scheme based on the magnetic 

sensor technology is as shown in Figure 1. 

 

 

Figure1. Surveillance scheme for targets on the surface 

2.2. Node deployment and runway section information 

Due to the large surveillance area, the geomagnetic technology-based surveillance scheme needs 

to consider the way of deployment and quantity of geomagnetic detection nodes to reduce the 

cost of tracking and communication redundancy. From surface restrictions given by reference 
[14]

, 

it can be known that considering the restrictions on a moving target in different airport areas, the 

target motion characteristics can be transcendentally predicted. In this paper, nodes are deployed 
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in combination with surface restrictions as is shown in Figure 2 (taking a taxiway section as an 

example). 

 

2l

3l

1sn
2sn

3sn
4sn

1l

 

 

Figure 2.  Node deployment 

 

The taxiing route of a moving target on the surface is divided into different sections, 

{ }1 2 3, ,L l l l= . A target mostly maintains single motion characteristics in different sections. For 

instance, the aircraft maintains accelerated motion during section 1l , constant motion during 

section 2l , and decelerated motion during section 3l . Geomagnetic detection nodes

{ }1 2 3 4, , ,SN sn sn sn sn= , are deployed at the cut-off rule of the adjacent sections. Each section 

comprises four parameters. For instance, section i can be defined as ( )1, , ,i i i il sn sn long+ , where 

i
l denotes number, 

i
sn denotes start node, 1i

sn + denotes terminal node, and
i

long denotes length. 

The section information is preserved in geomagnetic detection nodes for distributed computation 

after nodes perceive a target. In above-mentioned deployment, nodes can accurately perceive the 

target position as a target passes through them and modify the previous position information, and 

the velocity information can also be modified instantaneously via the target velocity obtained 

from nodes.  

3. I-IMM-BASED SURFACE TARGET TRACKING AND PREDICTION 

ALGORITHM 

 
In the surface surveillance scheme based on geomagnetic sensor technology, a target is in a 

perceptible state as it passes through nodes, which provide the velocity information. The data 

volume, however, is not large and can only be seen as small data samples. When a target 

completely detaches from nodes, it would be in an imperceptible state when moving in the 

section between nodes. Accordingly, the target tracking and prediction algorithm put forward in 

this paper needs to satisfy requirements as follows: When a target is perceptible, the real-time 

tracking is performed using the observed velocity information and the target motion model is 

accurately identified; When a target is not perceptible, extrapolated prediction is performed on 

trajectories thereof using the identified motion model. 

3.1. I-IMM algorithm 

I-IMM algorithm is improved based on IMM algorithm in the following two aspects: Weighted 

sum is performed on the mean of residual errors and model probabilistic likelihood function is 

reconstructed, thus increasing the identification of a true motion model; Model transition 
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probability is updated for self-adaption using model posterior probability, thus accelerating 

model switching as well as increasing the identification of a model. The schematic diagram of I-

IMM algorithm is as shown in Figure 3. This algorithm comprises the following 5 steps:Input 

interaction; Kalman filter; Model probability update; Model transition probability self-adaption; 

Output fusion. 

1
ˆ ( 1/ 1)X k k− − 2

ˆ ( 1/ 1)X k k− − ˆ ( 1/ 1)rX k k− −

01
ˆ ( / 1)X k k −
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1
ˆ ( / )X k k

2
ˆ ( / )X k k ˆ ( / )

n
X k k

1
( )kΛ

2 ( )kΛ

( )r kΛ

( )iu k

ˆ ( / )X k k

 

Figure 3. Schematic diagram of I-IMM algorithm 

 

3.1.1. Input interaction 

Assuming that a model set consists of r motion models, the state estimation value and covariance 

matrix of each model at time 1k −  are respectively as follows: ˆ ( 1| 1)jX k k− − and ˆ ( 1| 1)jP k k− −， 1, 2, ,j r= L .  

After interaction, the input in model j at time k is expressed as follows: 

0

1

ˆ ˆ( 1| 1) ( 1| 1) ( 1| 1)
r

j i ij

i

X k k X k k u k k
=

− − = − − − −∑                          (1) 

0

1

0

ˆ ˆ( 1| 1) ( 1| 1){ ( 1| 1)

ˆ ˆ[ ( 1| 1) ( 1| 1)] }

r

j ij i

i

T

i j

P k k u k k P k k

X k k X k k

=

− − = − − − −

+ − − − − −

∑
                 (2) 

Where, the mixture probability after input interaction is defined as:  

( 1| 1) ( 1) /ij ij i ju k k p u k c− − = −                                          (3) 
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Where,
1

( 1)
r

j ij i

i

c p u k
=

= −∑ ,
ijp denotes model transition probability, and ( 1)

i
u k −  denotes 

probability in model i  at time 1k − . 

3.1.2. Kalman filter 

Kalman filter consists of prediction process and update process. The prediction process is 

expressed by Eq. (4) and Eq. (5): 

0
ˆ ˆ( | 1) ( 1| 1)j j jX k k F X k k− = − −                                     (4) 

T

0
ˆ ˆ( | 1) ( 1| 1)j j j jP k k F P k k F Q− = − − +                                   (5) 

In the above equations, 
jF  is  the model state transition matrix; Q  is the noise covariance in 

each model during the estimation. 

Residual sequence and covariance matrix are: 

ˆ( ) ( ) ( | 1)j j jr k Z k HX k k= − −                                        (6) 

Tˆ( ) ( | 1)j jS k HP k k H R= − +                                         (7) 

In the above equations, ( )jZ k  is  the observed value for the time k ; H  is the observation 

matrix; R  is the noise covariance of observation. 

Kalman filter gain matrix is: 

1ˆ( ) ( | 1) ( )
T

j j jK k P k k H S k
−= −                                         (8) 

State estimate and covariance matrix update are expressed as follows: 

ˆ ˆ( | ) ( | 1) ( ) ( )j j j jX k k X k k K k r k= − +                                  (9) 

Tˆ ˆ( | ) ( | 1) ( ) ( | 1) ( )j j j j jP k k P k k K k S k k K k= − − −                       (10) 

3.1.3. Model probability update 

In IMM algorithm, maximum likelihood function in model j is as given in Eq. (11): 

11 1
( ) exp{ ( ) ( ) ( )}

22 ( )

T

j j j j

j

k r k S k r k
S kπ

−Λ = −                       (11) 

As can be seen from the Eq. (11), it is assumed that the motion model set can contain all motion 

models of a target during the operation in IMM algorithm. However, due to the factors like 

uncertainty of the motion of a surface target, surface restrictions and spot dispatch, the target 

motion model may exceed the model set in the algorithm. Therefore, innovation information is no 

longer considered to obey Gaussian distribution, in which mean value is zero and variance is

( )jS k , and thus model probabilistic likelihood function is reconstructed. 
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Let assume the true motion model of a surface moving target to be as follows: 

( ) ( 1) ( 1) ( 1)
T T T T

X k F k X k w k= − − + −                                    (12) 

( ) ( ) ( )
T T

Z k HX k v k= +                                              (13) 

Define the model state transition matrix error as follows: 

j T jF F F∆ = −                                                       (14) 

Define the state estimation error as follows: 

ˆ( 1) ( 1| 1) ( 1| 1)j T je k X k k X k k− = − − − − −                             (15) 

Expression for the state estimation error after input interaction is obtained: 

0 0

1

ˆ( 1) ( 1| 1) ( 1| 1) ( 1| 1) ( 1)
r

j T j ij i

i

e k X k k X k k u k k e k
=

− = − − − − − = − − −∑        (16) 

Given by Eq. (6) and Eq. (12), the residual error is obtained:  

0
ˆ( ) ( ) ( ) ( 1| 1)j T T j jr k HX k v k HF X k k= + − − −                            (17) 

Given by Eq. (12) and Eq. (15), the residual error is obtained: 

0 0
ˆ( ) ( -1) ( -1| -1) ( ) ( )j T j j j T Tr k HF e k H F X k k Hw k v k= + ∆ + +                 (18) 

Mean value obtained from Eq. (18) can be expressed as follows: 

0 0
ˆ( ) ( 1) ( -1| -1)j T j j jr k HF e k H F X k k= − + ∆                              (19) 

Where,
0

1

( 1) ( 1| 1) ( 1)
r

j ij i

i

e k u k k e k
=

− = − − −∑                               (20) 

Because of the uncertainty of the true motion model of a surface target, the quantization of 
T

F

and
jF∆ in Eq. (19) cannot be performed, causing the mean of residual errors not to be obtained. 

To solve this problem, the true motion model of a target is assumed to be j , and weighted sum is 

performed on another model in the model set to obtain ( )jr k .  

( )0 0

1

ˆ( ) ( 1) ( -1| -1) 1| 1
r

j j i i j i i

i

r k HF e k H F X k k u k k
=

 = − + ∆ − − ∑               (21) 

Where, 
i j iF F F∆ = − ，and 

0

1

( 1) ( 1| 1) ( 1)
r

i in n

n

e k u k k e k
=

− = − − −∑ . 

Then, maximum likelihood function in model
j

at time k can be given as: 

11 1
( ) exp ( ) ( ) ( ) ( ) ( )

22 ( )

T

j j j j j j

j

k r k r k S k r k r k
S kπ

− 
   Λ = − − −     

          (22) 
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( ) ( ) ( ) ( )
1

1
1 /

r

j j ij i j j

i

u k k p u k k c c
c =

= Λ − = Λ∑                              (23) 

Where, ( )
1

r

j j

j

c k c
=

= Λ∑                                              (24) 

3.1.4. Model transition probability self-adaption 

In IMM algorithm, because of the uncertainty of the target maneuver and the distortion of the 

prior information, the fixed model transition probability
ijp  fails to reflect the true motion model 

of a target, and switching velocity between models is also delayed during the target maneuver. 

Given that the observed velocity is small sample information, applying the fixed model transition 

probability
ijp may likely cause the target motion model hard to be identified or even not to be 

identified. Therefore, the model transition probability
ijp is updated using posterior information in 

I-IMM algorithm to solve this problem.  

Assuming that the probability in model j at time 1k −  is ( )1
j

u k − and at time k  is ( )j
u k , the 

probability differential value of the same model at adjoining times reflects the change in the 

matching degree between model j and the true motion model. The rate of change of the posterior 

probability in model j can be defined as: 

( ) ( ) ( )1
j j j

u k u k u k∆ = − −                                            (25) 

Let the model transition probability from model i  to model j at time 1k − be ( )1
ij

p k − , and 

update ( )1
ij

p k −  using ( )j
u k∆ , then the expression is obtained:  

( ) ( )( ) ( )exp 1
ij j ij

p k u k p k′ = ∆ −                                         (26) 

Model transition probability needs to satisfy basic properties as follows: 

1

0 1, , 1,2, ,

1

ij

r

ij

j

p i j r

p
=

< < =



=

∑

L

                                            (27) 

Then, normalization needs to be performed on ( )ij
p k′ , and the transition probability ( )ij

p k can 

be obtained: 

( )
( )

( )

( )( ) ( )

( )( ) ( )
1 1

exp 1

exp 1

j ijij

ij r r

ij j ij

j j

u k p kp k
p k

p k u k p k
= =

∆ −′
= =

′ ∆ −∑ ∑
                           (28) 
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As can be seen from Eq. (28), updated ( ) , 1, 2, ,
ij

p k i r= L increases as the transition of model 

from model i to model j , when the posterior information ( )j
u k∆ increases, thus model j plays a 

critical role in input interaction at next time period.  

3.1.5. Output fusion 

Interactive output results at time k are expressed as follows:  

( ) ( ) ( )
1

ˆ ˆ| |
r

j j

j

X k k X k k u k
=

=∑                                          (29) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }T

1

ˆ ˆ ˆ ˆ ˆ| | | | | |
r

j j j j

j

P k k u k P k k X k k X k k X k k X k k
=

   = + − −   ∑    (30) 

3.2. Trajectory prediction of targets not perceptible 

A target would be not perceptible as moving in the section between two adjacent nodes, requiring 

memory tracking of target trajectories using extrapolated prediction. 

At last moment of the period when a target is perceptible, I-IMM provides identification of each 

model in the model set, namely, model posterior probability ( ) , 1, 2, ,
j

u k j r= L . Then given by 

the self-adapting model transition probability ( )ij
p k , the expression for prediction probability of 

each model in the model set when a target not perceptible at time 1k + can be obtained:   

( ) ( )
1

1| ( ) , 1, 2, ,
r

j i ij

i

u k k u k p k j r
=

′ + = =∑ g L                                 (31) 

At the same time, posterior probability of each model needs to satisfy the following properties: 

1

0 1, 1,2, ,

1

j

r

j

j

u j r

u
=

< < =



=

∑

L

                                            (32) 

Then, normalization needs to be performed on posterior probability of each model predicted from 

Eq. (31), and model posterior probability at moment 1k + is obtained: 

( )
( )

( )
1

1|
1| =

1|

j

j r

j

j

u k k
u k k

u k k
=

′ +
+

′ +∑
                                             (33) 

After substituting state predicted value, ( )ˆ 1|jX k k+ and prediction model probability,

( )1|
j

u k k+ of each model into Eq. (29), state predicted value of the period when a target is not 

perceptible can be defined as :   
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( ) ( ) ( )
1

ˆ ˆ1| 1| 1|
r

j j

j

X k k X k k u k k
=

+ = + +∑                                (34) 

By performing extrapolated prediction on surface target trajectories using state predicted value 

obtained from Eq. (34), memory tracking and prediction can be implemented on a target not 

perceptible. 

4. SIMULATION AND ANALYSIS 

4.1. Preparation for simulation 

This paper presents, taking aircraft passing through a certain geomagnetic detection node on the 

taxiway for an example, IMM algorithm and I-IMM algorithm are compared through Monte 

Carlo simulation, regarding the performance of trajectory tracking of the aircraft perceptible and 

trajectory prediction of the aircraft not perceptible. 

According to the motion characteristics of the aircraft on the surface, the aircraft motion can be 

expressed by a model set comprising constant velocity (CV) model, constant acceleration (CA) 

model and constant jerk (CJ) model. State transition matrixes of three models are respectively 

expressions as follows: 

1 0 0

0 1 0 0

0 0 0 0

0 0 0 0

CV

T

F

 
 
 =
 
 
 

， 2

1 0
2

0 1 0

0 0 1 0

0 0 0 0

CA

T
T

TF

 
 
 

=  
 
 
  

， 2 3

2

1
2 6

0 1
2

0 0 1

0 0 0 1

CJ

T T
T

T
F T

T

 
 
 
 

=  
 
 
 
 

 

 

Where, T is the interval of sampling. Motion state vector of the aircraft is , and 

observation matrix is [ ]0 1 0 0H = .   

In the period when aircraft is perceptible, the process of the aircraft operation is as follows:(1) 

Performing CJ at 0.3
3/m s from 0 to 4.5 seconds; (2) Performing CA at 0.45

2/m s from 4.58 to 

12 seconds; (3) Performing CV at the velocity obtained from step (2) from 12 to15 seconds. 

In the period when aircraft is not perceptible, it maintains CV for about 30 seconds at the velocity 

obtained from step (3) and then operates to the next detection node. 

The actual position of the aircraft according to the operation process is as shown in Figure 4.  
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Figure 4. Actual position of the aircraft 

The simulation parameters selection is as follows: Noise covariance in each model during the 

estimation is

0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

Q

 
 
 =
 
 
 

; Noise covariance of velocity observation is

0.15R = ; the interval of sampling is 0.3T s= ; Initial model probabilities of CV model，CA 

model and CJ model are respectively 0.4，0.3 and 0.3; Initial model transition matrix can be 

given as: 

0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9

markov
P

 
 =  
  

. 

4.2. Simulation results and analysis in perceptible period 

Simulation results in the period when the aircraft is perceptible are as displayed in Figure 5 to 8. 

 

Figure 5.  Position tracking 
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Figure 6. Velocity tracking 

 

Figure 7. Acceleration tracking 

 

Figure 8.  Jerk tracking 
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Figure 5 to 8 illustrate the excellence of I-IMM algorithm when used to track the motion state of 

the aircraft. Fig. 5 and 6 demonstrate that compared with IMM algorithm, the position and 

velocity tracked with I-IMM algorithm are more approximate to the actual position and velocity 

of the aircraft. To show the advantage of I-IMM more manifestly, the position error curve and 

velocity root-mean-square error(RMSE) curve of I-IMM and IMM algorithm are respectively 

plotted, as shown in Figure 9 and 10. 

 

Figure 9. Position error curve 

 
Figure 10. Velocity RMSE curve 

Figure 9 shows maximum position error using IMM algorithm is 1.600m, while using I-IMM 

algorithm is only 0.600m. Figure 10 shows maximum RMSE error using IMM algorithm is 

0.059m/s, while using I-IMM algorithm is 0.023m/s. As can be seen from the result, the tracking 

precision is well improved when using I-IMM algorithm. 

Figure 11 presents the selection probability curves of CV, CA and CJ models when IMM and I-

IMM algorithm are respectively employed. Figure 11 demonstrates that IMM algorithm cannot 

identify each motion model very clearly, and three selection probability curves intersect 

intensely. For instance, in constant accelerating phase, IMM algorithm’s maximum identification 
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degree of CA model is 0.710; Comparatively, I-IMM algorithm can largely improve the 

identification degree. In constant jerking phase, the maximum identification degree of CJ model 

is 0.987, while in constant accelerating phase, the maximum identification degree of CA model 

can reach to 0.987, and in constant velocity phase, the maximum identification degree of CV 

model is 0.987. As for model switching, the switching velocity in I-IMM algorithm is much 

faster than that in IMM algorithm. In IMM algorithm, it takes 2.4 seconds to switch from CJ 

model to CA model, and 1.8 seconds from CA model to CV model. In comparison, when 

employing I-IMM algorithm, it only takes 0.9 seconds to switch from CJ model to CA model, 

and only 0.9 seconds from CA model to CV model. 

 
Figure 11.  Selection probability in IMM and I-IMM 

 

4.3. Simulation results and analysis in imperceptible period 

Simulation results of trajectory prediction in the period when the aircraft is not perceptible are as 

displayed in Figure 12 and 13. 

 

 
Figure 12.  Position prediction 
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Figure 13.  Position prediction error 

Figure 12 illustrates that the deviation between the aircraft position predicted with either IMM or 

I-IMM algorithm and the real position increases with the increase of the running time. Figure 13 

illustrates that at the last moment of position prediction, the position prediction error is 

accumulated to 9.790m when IMM algorithm is used, while only to 2.160m when I-IMM 

algorithm is used. It is apparent that I-IMM algorithm outperforms IMM algorithm in terms of 

trajectory extrapolated prediction, particularly in the period when the aircraft is not perceptible. 

 

5. CONCLUSIONS 

 
In view of the inherent defects in current surface surveillance system, this paper proposes a 

asynchronous target-perceiving-event driven surface moving target surveillance scheme based on 

the geomagnetic sensor technology. Furthermore, a surface moving target tracking and prediction 

algorithm is given based on I-IMM, which is improved on the basis of IMM algorithm in the 

following aspects: Weighted sum is performed on the mean of residual errors and model 

probabilistic likelihood function is reconstructed, thus increasing the identification of a true 

motion model; Model transition probability is updated for self-adaption with model posterior 

probability, thus accelerating model switching as well as increasing the identification of a model. 

At last, this paper presents simulation results of target tracking and prediction in both periods 

when a target is perceptible and not perceptible using two algorithms, demonstrating that the I-

IMM algorithm is more effective than IMM algorithm, particularly when a target is not 

perceptible.  
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