

David C. Wyld et al. (Eds) : NETCOM, NCS, WiMoNe, CSEIT, SPM - 2015

pp. 99–114, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51609

LIMITING SELF-PROPAGATING MALWARE

BASED ON CONNECTION FAILURE

BEHAVIOR

Yian Zhou
1
, You Zhou

1
, Shigang Chen

1
 and O. Patrick Kreidl

2

1
Department of Computer & Information Science & Engineering,

University of Florida, Gainesville, FL, USA 32611
yian,youzhou,sgchen@cise.ufl.edu

2
Department of Electrical Engineering, University of North Florida,

Jacksonville, FL, USA 32224
patrick.kreidl@unf.edu

ABSTRACT

Self-propagating malware (e.g., an Internet worm) exploits security loopholes in software to

infect servers and then use them to scan the Internet for more vulnerable servers. While the

mechanisms of worm infection and their propagation models are well understood, defense

against worms remains an open problem. One branch of defense research investigates the

behavioral difference between worm-infected hosts and normal hosts to set them apart. One

particular observation is that a worm-infected host, which scans the Internet with randomly

selected addresses, has a much higher connection-failure rate than a normal host. Rate-limit

algorithms have been proposed to control the spread of worms by traffic shaping based on

connection failure rate. However, these rate-limit algorithms can work properly only if it is

possible to measure failure rates of individual hosts efficiently and accurately. This paper points

out a serious problem in the prior method and proposes a new solution based on a highly

efficient double-bitmap data structure, which places only a small memory footprint on the

routers, while providing good measurement of connection failure rates whose accuracy can be

tuned by system parameters.

KEYWORDS

Self-propagating Malware, Connection Failure Behavior, Rate Limitation, Shared Bitmap

1. INTRODUCTION

Self-propagating malware (e.g., an Internet worm) exploits security loopholes in server software.

It infects vulnerable servers and then uses them to scan the Internet for more vulnerable servers [1

- 3]. In the past two decades, we have witnessed a continuous stream of new worms raging across

the Internet [4 - 7], sometimes infecting tens of thousands or even millions of computers and

causing widespread service disruption or network congestion. The mechanisms of worm

propagation have been well understood [8 - 11], and various propagation models were developed

[12 - 15] to demonstrate analytically the properties of how worms spread among hosts across

100 Computer Science & Information Technology (CS & IT)

networks. Significant efforts have also been made to mitigate worms, with varying degrees of

success and limitations. Worms remain a serious threat to the Internet.

Patching defects in software is the most common defense measure, not only to worms but also to

other types of malware. However, it is a race for who (good guys or bad guys) will find the

security defects first. Software is vulnerable and its hosts are subject to infection before the

security problems are identified and patched. Moreover, not all users will patch their systems

timely, leaving a window of vulnerability to the adversary that will try to exploit every

opportunity. Moore et al. investigated worm containment technologies such as address

blacklisting and content filtering, and such systems must interdict nearly all Internet paths in

order to be successful [13]. Williamson proposed to modify the network stack to bound the rate

of connection requests made to distinct destinations [16]. To be effective, it requires a majority of

all Internet hosts are upgraded to the new network stack, which is difficult to realize. Similar

Internet-wide upgrades are assumed by other host-based solutions in the literature, each

employing intrusion detection and automatic control techniques whose supporting models must

be calibrated for the specific machine that they will reside upon [17 - 20].

Avoiding the requirement of coordinated effort across the whole Internet, the distributed anti-

worm architecture (DAW) [21] was designed for deployment on the edge routers of an Internet

service provider (ISP) under a single administrative control. DAW observes a behavioral

difference between worm-infected hosts and normal hosts: as an infected host scans random

addresses for vulnerable hosts, it makes connection attempts but most will fail, whereas normal

users's connection attempts to their familiar servers are mostly successful. By observing the failed

connections made by the hosts, the edge routers are able to separate out hosts with large failure

rates and contain the propagation of the worms. With a basic rate-limit algorithm, a temporal

rate-limit algorithm and a spatial rate-limit algorithm, DAW offers the flexibility of tightly

restricting the worm's scanning activity, while allowing the normal hosts to make successful

connections at any rate.

However, for rate limit to work properly, we must be able to measure the connection failure rates

of individual hosts accurately and efficiently. This paper points out that using Internet Control

Message Protocol (ICMP) messages for this purpose [21] is flawed as they are widely blocked on

today's Internet, and the total number of message packets in this big data [22] [23] [30] [31] and

cloud computing [36 - 39] era is enormous. This paper designs a new measurement method that

solves the problem with a highly efficient data structure based on bitmaps, which keeps record of

connection attempts and results (success or fail) in bits, from which we can recover the

connection failure rates, while removing the duplicate connection failures (which may cause bias

against normal hosts). Our double-bitmap solution is highly efficient for online per-packet

operations, and the simulation results show that not only does the data structure place a small

memory footprint on the routers, but also it provides good measurement of connection failure

rates whose accuracy can be tuned by system parameters.

The rest of the paper is organized as follows: Section 2 gives the propagation model of random-

scanning worms and reviews the rate-limit algorithms based on connection failure rates. Section

3 explains the problem causing inaccurate failure rate measurement and provides a novel solution

with double bitmaps. Section 4 presents simulation results. Section 5 draws the conclusion.

Computer Science & Information Technology (CS & IT) 101

2. BACKGROUND

2.1 Propagation of Random-scanning Worms

This paper considers a type of common worms that replicates through random scanning of the

Internet for vulnerable hosts. Their propagation can be roughly characterized by the classical

simple epidemic model [26 - 28]:

()

()(1 ()),
()

di t
i t i t

d t
β= − (1)

where ()i t is the percentage of vulnerable hosts that are infected with respect to time t , and β is

the rate at which a worm-infected host detects other vulnerable hosts. More specifically, it has

been derived [27] that the derivative formula of worm propagation is

()

()(1 ()),
di t V

r i t i t
dt N

= − (2)

where r is the rate at which an infected host scans the address space, N is the size of the

address space, and V is the total number of vulnerable hosts.

Solving the equation, the percentage of vulnerable hosts that are infected over time is

()

()

() .

1

V
r t T

N

V
r t T

N

e
i t

e

−

−
=

+

Let v be the number of initially infected hosts at time 0. Because (0) /i v V= , ln
N v

T
r V V v

= −
⋅ −

.

Solving this logistic growth equation for t , we know the time it takes for a percentage

(/)v Vα ≥ of all vulnerable hosts to be infected is

 () (ln ln()).
1

N v
t

r V V v

α
α

α
= −

⋅ − −
 (3)

It is clear that ()t α is inversely proportional to the scanning rate r , which is the number of

random addresses that an infected host attempts to contact (for finding and then infecting

vulnerable hosts) in a certain measurement period. If we can limit the rate of worm scanning, we

can slow down their propagation, buying time for system administrators across the Internet to

take actions.

2.2. Behavior-based Rate-Limit Algorithms

In order to perform rate-limit, we need to identify hosts that are likely to be worm-infected. One

way to do so is observing different behaviors exhibited from infected hosts and normal hosts.

One important behavioral observation was made by [21], which argues that infected hosts have

102 Computer Science & Information Technology (CS & IT)

much larger failure rates in their initiated Transfer Contorl Protocol (TCP) connections than

normal hosts. We can then apply rate limits to hosts with connection failure rates beyond a

threshold and thus restrict the speed at which worms are spread to other vulnerable hosts. (Same

as our work, the paper [21] studies worms that spread via TCP, which accounts for the majority

of Internet traffic.) Below we briefly describe the host behavior difference in connection failure

rate, which is defined as the number of failed TCP connection attempts made by a source host

during a certain measurement period, where each attempt corresponds to a SYN packet and each

SYN-ACK signals a successful attempt, while the absence of a SYN-ACK means a failure.

• Suppose a worm is designed to attack a software vulnerability in a certain version of web

servers from a certain vendor. Consider an arbitrary infected host. Let N be the total

number of possible IP addresses and N ′ be the number of addresses held by web servers,

which listen to port 80. N N′ = because web servers only account for a small fraction

of the accessible Internet. As the infected host picks a random IP address and sends a

SYN packet to initiate a TCP connection to port 80 of that address, the connection only

has a chance of /N N′ to be successful. It has a chance of 1 / 1N N− ′ ≈ to fail. The

experiment in [21] shows that only 0.4% of all connections made to random addresses at

TCP port 80 are successful. Together with a high scanning rate, the connection failure

rate of an infect host will be high. Moreover, the measured connection failure rate is an

approximation of the host's scanning rate.

• The connection failure rate of a normal host is generally low because a typical user

accesses pre-configured servers (such as mail server and DNS server) that are known to

be up for most of the time. An exception is web browsing, where the domain names of

web servers are used, which again lead to successful connections for most of the time

according to our experiences. Cases when the domain names are mistyped, it result in

DNS lookup failure and no connection attempts will be made --- consequently no

connection failure will occur.

By measuring the connection failure rates of individual hosts, the paper [21] proposes to limit the

rate at which connection attempts are made by any host whose failure rate exceeds a certain

threshold. By limiting the rate of connection attempts, it reduces the host's connection failure rate

back under the threshold. An array of rate-limit algorithms were proposed. The basic algorithm

rate-limits individual hosts with excessive failure rates. The temporal rate-limit algorithm can

tolerate temporary high failure rates of normal hosts but make sure the long-term average failure

rates are kept low. The spatial rate-limit algorithm can tolerate some hosts' high failure rates but

make sure that the average failure rates in a network are kept low.

An important component that complements the rate-limit algorithms is the measurement of

connection failure rates of individual hosts. This component is however not adequately addressed

by [21]. As we will point out in the next section, its simple method does not provide accurate

measurement on today's Internet. We will provide a new method that can efficiently solve this

important problem with a novel data structure of double bitmaps.

Computer Science & Information Technology (CS & IT) 103

3. A DOUBLE-BITMAP SOLUTION FOR LIMITING WORM

PROPAGATION

In this section, we explain the problem that causes inaccurate measurement of connection failure

rates and provide a new measurement solution that can work with existing rate-limit algorithms

to limit worm propagation.

3.1. Failure Replies and the Problem of Blocked ICMP Messages

We first review the method of measuring the connection failure rates in [21]. After a source host

sends a SYN packet to a destination host, the connection request fails if the destination host does

not exist or does not listen on the port that the SYN is sent to. In the former case, an ICMP host-

unreachable packet is returned to the source host; in the latter case, a TCP RESET packet is

returned. The ICMP host-unreachable or TCP RESET packet is defined as a failure reply. The

connection failure rate of a host s is measured as the rate of failure replies that are sent to s . The

rationale behind this method [21] is that the rate of failure replies sent back to the source host

should be close to the rate of failed connections initiated by the host. The underlying assumption

is that, for each failed connection, a failure reply (either an ICMP host-unreachable packet or a

TCP RESET packet) is for sure to be sent back to the source host.

However, this assumption may not be realistic. Today, many firewalls and domain gateways are

configured to suppress failure replies. In particular, many organizations block outbound ICMP

host-unreachable packets because attacks routinely use ICMP as a reconnaissance tool. When the

ICMP host-unreachable packets are blocked, the rate of failure replies sent back to a source host

will be essentially much lower than the rate of failed connections that the host has initiated. In

other words, a potential worm-affected host may initiate many failed connections, but only a

handful of failure replies will be sent back to it. Under these circumstances, the connection failure

rate measured by failure replies will be far lower than the actual failure rate, which in turn

misleads the rate-limit algorithms and makes them less effective.

To make the problem more complicated, when we measure the connection failure rates of

individual hosts, all failed connections made from the same source host to the same destination

host in each measurement period should be treated as duplicates and thus counted only once. We

use an example to illustrate the reason: Suppose the mail server of a host is down and the email

reader is configured to automatically attempt to connect to the server after each timeout period

(e.g., one minute). In this case, a normal host will generate a lot of failed connections to the same

destination, pushing its connection failure rate much higher than the usual value (when the server

is not down) and falsely triggering the rate-limit algorithms to restrict the host's access to the

Internet. Therefore, when we measure the connection failure rate of a source host, we want to

remove the duplicates to the same destination and measure the rate of failed connections to

distinct destinations.

3.2 SYN/SYN-ACK Solution and Problems of Duplicate Failures and Memory

Consumption

We cannot use failure replies to measure the connection failure rates. Another simple solution is

to use SYN and SYN-ACK packets. Each TCP connection begins with a SYN packet from the

source host. If a SYN-ACK packet is received, we count the connection as a successful one;

otherwise, we count it as a failed connection. (Technically speaking, a third packet of ACK from

104 Computer Science & Information Technology (CS & IT)

the source to the destination completes the establishing of the connection. For our anti-worm

purpose, however, the returned SYN-ACK already shows that the destination host is reachable

and listens to the port, which thus does not signal worm behavior --- random scanning likely hits

unreachable hosts or hosts not listening to the port.)

Using SYN and SYN-ACK packets, a naive solution is for each edge router to maintain two

counters, sk and rk , for each encountered source address, where sk is the rate of SYN packets

sent by the source (i.e., the number of SYN packets sent during a measurement period), and rk is

the rate of SYN-ACK packets received by the source (i.e., the number of SYN-ACKs received

during a measurement period). The connection failure rate k is simply s rk k− .

This simple solution is memory efficient, as it only requires 64 bits per source host for failure rate

measurement, assuming each counter takes 32 bits. However, this solution cannot address the

problem of duplicate failures. As discussed in Section 3.1, when we measure the connection

failure rate of a source host, we want to remove the duplicates to the same destination in the same

measurement period, because measuring duplicate failures may cause bias against normal hosts.

Maintaining two counters alone cannot achieve the goal of removing duplicate failures.

An alternative solution is to have the edge router store a list of distinct destination addresses for

each source host. However, such per-source information consumes a large amount of memory.

Suppose each address costs 32 bits. The memory required to store each source host's address list

will grow linearly with the rate of distinct destination hosts that the source host initiates

connection requests to. For example, the main gateway at our campus observes an average of

more than 10 million distinct source-destination pairs per day. If the edge router keeps per-source

address list, it will cost more than 320 megabits of memory, which soon exhausts the small on-

die SRAM memory space of the edge router. Therefore, this solution is not feasible either.

The major goal of this paper is to accurately measure the connection failure rates with a small

memory. However, tradeoffs must be made between measurement accuracy and memory

consumption under the requirement of duplicate failure removal. Existing research uncovered the

advantages of using Bloom filters [28] [29] or bitmaps [24] [25] [32 - 35] [40] to compress the

connection information in limited memory space and automatically filter duplicates, which can be

adopted to measure the connection failure rates. For example, the edge router can maintain two

bitmaps for each source host, and map each SYN/SYN-ACK packet of the host into a bit in the

host's corresponding bitmap, from which the rate of SYN/SYN-ACK packets of each host can be

recovered. However, the measurement accuracy depends on setting the bitmap size for each

source host properly in advance. In practice, it is difficult to pre-determine the values as different

source hosts may initiate connection requests at unpredictable and different rates, which limits

the practicability of this solution as well.

3.3. Double Bitmaps

In order to address the problems of duplicate failures and memory consumption, instead of using

per-source address lists or bitmaps, we incorporate two shared bitmaps to store the SYN/SYN-

ACK information of all source hosts. Our double-bitmap solution includes two phases: in the first

phase, the edge router keeps recoding the SYN/SYN-ACK packets of all source hosts through

setting bits in the bitmaps; in the second phase, the network management center will recover the

connection failure rates from the two bitmaps based on maximum likelihood estimation (MLE),

Computer Science & Information Technology (CS & IT) 105

and notify the edge router to apply rate limit algorithms to limit the connection attempts made by

any host whose failure rate exceeds some threshold. Below we will explain the two phases, and

then mathematically derive an estimator to calculate the connection failure rate.

3.3.1. Phase I: SYN / SYN-ACK Encoding

In our solution, each edge router maintains two bitmaps
s

B and
r

B , which encode the distinct

SYN packets and SYN-ACK packets of all source hosts within its network, respectively. Let
s

m

and
r

m be the number of bits in
s

B and
r

B correspondingly. Below we will explain how an

edge router encodes the distinct SYN packet information into
s

B , which can later be used to

estimate the SYN sending rate
s

k for each source host. The way for the edge router to encode the

distinct SYN-ACK packet information into
r

B is quite similar, which we omit.

For each source host src , the edge router randomly selects
s

l (
s

m=) bits from the bitmap
s

B

to form a logical bitmap src , which is denoted as ()LB src . The indices of the selected bits are

([0])H src R⊕ , ([1])H src R⊕ , L , ([1])
s

H src R l⊕ − , where ⊕ is bitwise XOR, ()H L is

a hash function whose range is [0,)
s

m , and R is an integer array storing randomly chosen

constants to arbitrarily alter the hash result. Similarly, the logical bitmap can be constructed from

s
B for any other hosts. Essentially, we embed the bitmaps of all possible hosts in

s
B . The bit-

sharing relationship is dynamically determined on the fly as each new host src′ will be allocated

a logical bitmap ()LB src′ from
s

B to store its SYN packet information.

Given above notations and data structures, the online coding works as follows. At the beginning

of each measurement period, all bits in
s

B are reset to zeros. Suppose a SYN packet signatured

with a ,src dst host address pair is routed by the edge router. The router will randomly select a

bit from the logical bitmap ()LB src based on src and dst , and set this bit in
s

B to be one. The

index of the bit to be set for this SYN packet is given as follows:

([() mod]).
s

H src R H dst K l⊕ ⊕

The second hash, ()H dst K⊕ , ensures that the bit is pseudo-randomly selected from ()LB src ,

and the private key K is introduced to prevent the hash collision attacks. Therefore, the overall

effect to store the SYN packet information is :

[([() mod])] 1.
s

B H src R H dst K l⊕ ⊕ =

Similarly, the edge router only needs to set a bit in the bitmap
r

B to be one for each SYN-ACK

packet using the same mechanism. Note that in our solution, to store a SYN/SYN-ACK packet,

the router only performs two hash operations and sets a single bit in its bitmap, which is quite

efficient. In addition, duplicates of SYN and SYN-ACK information with same ,src dst

106 Computer Science & Information Technology (CS & IT)

signature will mark the same bit in the shared bitmaps such that the duplicate information is

filtered as desired.

3.3.2. Phase II: Failure Rate Measurement

At the end of each measurement period, the edge router will send the two bitmaps
s

B and
r

B to

the network management center (NMC), which will estimate connection failure rate k for each

source host src based on
s

B and
r

B , and notify the edge router to apply rate limit algorithms to

limit the connection attempts made by any host whose failure rate exceeds some threshold. Since

rate-limit algorithms have been fully studied in [21], we will focus on the measurement of

connection failure rates based on the bitmaps. The measurement process is described in the

following.

First, the NMC extracts the logical bitmaps ()LB src and ()LB src′ of each source host src

from the two bitmaps
s

B and
r

B , respectively. Second, the NMC counts the number of zeros in

()LB src , ()LB src′ ,
s

B and
r

B , which are denoted by
l

sU ,
l

rU ,
m

sU , and
m

rU , respectively.

Then the NMC divides them by the corresponding bitmap size
s

l ,
r

l ,
s

m , and
r

m , and calculates

the fraction of bits whose values are zeros in ()LB src , ()LB src′ ,
s

B and
r

B correspondingly.

That is, /l l

s s sV U l= , /l l

r r rV U l= , /m m

s s sV U m= , and /m m

r r rV U m= . Finally, the NMC uses

the following formula to estimate connection failure rate k for source host src :

ln ln ln lnˆ

1 1 1 1
ln(1) ln(1) ln(1) ln(1)

l m l m

s s r r

s s r r

V V V V
k

l m l m

− −
= −

− − − − − −

 (4)

3.3.3. Derivation of the MLE estimator

Now we follow the standard MLE method to get the MLE estimators ˆ
sk and ˆ

rk of
s

k and
r

k ,

respectively, and then derive k̂ given by (4). Since the way to derive the MLE estimator for
s

k

and
r

k is quite similar, we will only derive the MLE estimator formula for ˆ
sk , and directly give

the result for ˆ
rk . To derive ˆ

sk , we first analyze the probability ()
s

q k for an arbitrary bit in

()LB src to be '0', and use ()
s

q k to establish the likelihood function L to observer
l

sU '0' bits

in ()LB src . Finally, maximizing L with respect to
s

k will lead to the MLE estimator, ˆ
sk .

Note that
s

k is the actual rate of distinct SYN packets sent by a source host src , and
s

n is the

rate of distinct SYN packets sent by all hosts within the router's network. Consider an arbitrary

bit b in ()LB src . A SYN packet sent by src has a probability of 1/
s

l to set b to '1', and a

SYN packet sent by any other host has a probability of 1/
s

m to set b to '1'. Hence, the

probability ()
s

q k for bit b to remain '0' at the end of the measurement period is

Computer Science & Information Technology (CS & IT) 107

1 1

() 1 1 .

s s sn k k

s

s s

q k
m l

−
   

= − −   
   

 (5)

Because the bits in any logical bit array are randomly selected from the bitmap
s

B , each of the

s
n SYN packets has about the same probability of 1/

s
m to choose any bit in

s
B . So for an

arbitrary bit in
s

B , the probability for it to be '0' after storing all
s

n distinct SYN packets is

1

() 1 .

sn

s

s

q n
m

 
= − 
 

 (6)

In this sense, the number of zero bits in
s

B follows a binomial distribution (, ())m

s s sU B m q n:

(, (1 1/))sn

s sB m m= − . Therefore, the expected value for
m

sV is

1
(1)

() ().

sn

sm
m s s

s s

s s

m
U m

E V E q n
m m

−
 

= = = 
 

 (7)

Substituting (7) to (5), and replacing ()m

sE V by its instance value
m

sV , we have the following

instance value for ()
s

q k :

1 1/

() .
1 1/

sk

m s
s s

s

l
q k V

m

 −
= ×  

− 
 (8)

Given the probability for each bit in ()LB src to be '0' as ()
s

q k , we can establish the likelihood

function to observe
l

sU '0' bits in ()LB src as follows:

 () (1 ()) .
l l
s s sU l U

s s
L q k q k

−= − (9)

The MLE estimator of
s

k is the value of
s

k that maximizes the above likelihood function.

Namely,

{ }ˆ arg max .
s

s
k

k L= (10)

To find ˆ
sk , we take logarithm on both sides, and then perform the first order derivative to obtain

ln()

(),
() 1 ()

l l

s s s

s

s s s

U l UL
k

k q k q k
q

 −∂
′= − × 

∂ − 
 (11)

where ()
s

q k′ is computed as

108 Computer Science & Information Technology (CS & IT)

1 1/

() () ln .
1 1/

s

s s

s

l
k q kq

m

 −
′ = ×  

− 
 (12)

Since 1
s s

m l> ≥ and 0
s

n > , ()
s

q k and ()
s

q k′ cannot be 0. Setting the right side of (11) be

zero, we have

 () .
l

ls

s s

s

U
q k V

l
= = (13)

Substituting above equation to (8) and solving for
s

k , we get the MLE estimator of
s

k :

ln lnˆ .

1 1
ln(1) ln(1)

l m

s s

s

s s

V V
k

l m

−
=

− − −

 (14)

Similarly, we can derive the MLE estimator of
r

k :

ln lnˆ .

1 1
ln(1) ln(1)

l m

r r
r

r r

V V
k

l m

−
=

− − −

 (15)

Since
s r

k k k= − , given the MLE estimators ˆ
s

k and ˆ
r

k of
s

k and
r

k , we can easily derive the

estimator of k as

 ˆ ˆ ˆ .
s r

k k k= − (16)

Substituting (14) and (15) to the above equation, we derive the estimator k̂ as described in (4).

Note that if the two bitmaps
s

B and
r

B have the same size, and the two logical bitmaps for each

source host also have the same size, i.e.,
s r

m m m= = and
s r

l l l= = , then the estimator for the

connection failure rate k will be in a more compact form:

ln ln ln lnˆ .
1 1

ln(1) ln(1)

l m l m

s s r r
V V V V

k

l m

− − +
=

− − −

 (17)

4. SIMULATION

We evaluate the measurement accuracy of our estimator for the connection failure rate through

simulations. Recall that the major goal of this paper is to provide a good estimator for measuring

the connection failure rates of individual hosts that can work well in a small memory. Hence, in

Computer Science & Information Technology (CS & IT) 109

our simulations, we purposely allocate memory with small sizes to encode the information of

distinct SYN and SYN-ACK packets for all source hosts, such that the average memory size for

each source host will be ranging from 10 bits to 40 bits only. As we explained in Section 3.2, the

solution with per-source address lists or bitmaps will not work with this small memory size.

Therefore, our solution outperforms in the aspect of greatly reducing the required online memory

footprint for connection failure rate measurement while achieving duplicate failure removal.

4.1. Simulation Setup

Our simulations are conducted under the following setups. We simulate 50,000 distinct source

hosts as normal hosts, and 100 distinct source hosts as worm-affected hosts. For the normal hosts,

they will send distinct SYN packets to different destination hosts, with a rate following an

exponential distribution whose mean is 5 distinct SYN packets per minute. For each distinct SYN

packet that a normal host sends out, a corresponding SYN-ACK packet will be sent back to the

host with a probability, which follows a uniform distribution in the range of [0.8, 1.0]. As for the

worm-affected hosts, we simulate their aggressive scanning behavior by having them send

distinct SYN packets to different destination hosts with a higher rate, which follows another

exponential distribution whose mean is 10 distinct SYN packets per second. Since the worm-

affected hosts will randomly scan the whole destination space, their failure rate is expected to be

very high as we explained earlier. Therefore, in our simulations, no SYN-ACK packets will be

sent back to them. Suppose each measurement period is 1 minute. Then each normal host will

send 5 distinct SYN packets and receive 4.5 distinct SYN-ACK packets on average, and each

worm-affected host will send 600 distinct SYN packets and 0 SYN-ACK packet on average,

during each measurement period.

In our simulations, all the SYN and SYN-ACK packets are processed by a single simulated edge

router and a simulated network management center according to our two-phase measurement

scheme. First of all, the SYN and SYN-ACK packets are encoded into two m-bit bitmaps
s

B and

r
B of the edge router, respectively, as described in Section 3.3.1 (Phase I: SYN/SYN-ACK

Encoding). After all packets are encoded into the two bitmaps
s

B and
r

B , the edge router will

send
s

B and
r

B to the network management center, which will estimate the connection failure

rate of each source host based on
s

B and
r

B offline, as described in Section 3.3.2 (Phase II:

Failure Rate Measurement).

4.2. Simulation Results

We conduct three sets of simulations with three different sizes of memory allocated for the

bitmaps
s

B and
r

B ,
s r

m m m= = = 0.5Mb, 1Mb, and 2Mb, to observe the measurement

accuracy under different memory constraints. The sizes of the logical bitmaps for each host is set

to be 300
s r

l l l= = = . Figure. 1-3 present the simulation results when the allocated memory m

equals 2Mb, 1Mb, and 0.5Mb, respectively. Since there are a total of 50,100 source hosts, the

average memory consumption per source host will be about 40 bits, 20 bits, and 10 bits,

accordingly. In each figure, each point represents a source host, with its x-coordinate showing the

actual connection failure rate k (per minute) and y-coordinate showing the estimated connection

failure rate k̂ (per minute) measured by our scheme. The equality line y = x is also drawn for

reference. Clearly, the closer a point is to the quality line, the better the measurement result.

110 Computer Science & Information Technology (CS & IT)

Figure 1. Measurement accuracy of Figure 2. Measurement accuracy of

connection failure rate per minute. connection failure rate per minute.

m = 2Mb, l = 300. m = 1Mb, l = 300.

Figure 3. Measurement accuracy of connection failure rate per minute. m = 0.5Mb, l = 300.

From the three figures, one can observe that the measurement result for the connection failure

rates of our scheme is quite accurate under all three different memory constraints. For almost

every source host, the measured failure rate closely follows its real failure rate as shown in the

figures. There is a tendency for the measurement result to be slightly more accurate with a larger

memory size (compare Figure. 1 and Figure. 3). However, for our scheme, a small memory of

size m = 0.5Mb (equivalent to 10 bits per source host on average) is adequate enough to generate

sound measurement results as shown in Figure. 3. Recall that for the solution storing per-source

address list, the destination address of every SYN packet must be stored for every source host. So

for that solution, a normal source host initiating 5 connection requests (5 distinct SYN packets)

per minute will require at least 32 × 5 = 160 bits to record its SYN packets, and a worm-affected

host sending 10 SYN packets per second will require at least 32 × 600 = 19200 bits, for each

measurement period of one minute. Clearly, through utilizing double bitmaps, our scheme

Computer Science & Information Technology (CS & IT) 111

outperforms the solution storing address lists, because it can work well with a much more strict

memory constraint.

5. CONCLUSION

This paper proposes a new method of measuring connection failure rates of individual hosts,

using a novel data structure based on double bitmaps. It addresses an important problem in rate-

limiting worm propagation, where inaccurate failure rates will affect the performance of rate-

limit algorithms. The past method relies on ICMP host-unreachable messages, which are however

widely blocked on today's Internet. The new method makes the measurement based on SYN and

SYN-ACK packets, which is more reliable and accurate. Its bitmap design helps significantly to

reduce the memory footprint on the routers and eliminates the duplicate connection failures

(another problem of the previous method).

ACKNOWLEDGEMENTS

This work is supported in part by a grant from Florida Cybersecurity Center.

REFERENCES

[1] M. Barwise, “What is an internet worm?,” http://www.bbc.co.uk/webwise/guides/internet-worms,

2010.

[2] D. M. Kienzle and M. C. Elder, “Recent Worms: A Survey and Trends,” Proc. of ACM Workshop on

Rapid Malcode, pp. 1-10, 2003.

[3] J. Rochlis and M. Eichin, “With Microscope and Tweezers: The Worm from MIT's Perspective,”

Communication of the ACM, vol. 32, no. 6, pp. 689-698, 1989.

[4] J. Maniscalchi, “Worm Evolution,” http://www.digitalthreat.net/2009/05/worm-evolution/, 2009.

[5] Computer Emergency Response Team, “CERT Advisory CA-2001-26 Nimda Worm,”

http://www.cert.org/advisories/CA-2001-26.html, 2001.

[6] Computer Emergency Response Team, “CERT Advisory CA-2003-04 MS-SQL Server Worm,”

http://www.cert.org/advisories/CA-2003-04.html, 2003.

[7] Computer Emergency Response Team, “CERT Alert Conficker Worm Targets Microsoft Windows

Systems,” https://www.us-cert.gov/ncas/alerts/TA09-088A, 2013.

[8] Z. Chen and C. Ji, “Measuring Network-Aware Worm Spreading Ability,” Proc. of IEEE INFOCOM,

pp. 116-124, 2007.

[9] Z. Li, L. Wang, Y. Chen, and Z. Fu, “Network-Based and Attack-Resilient Length Signature

Generation for Zero-Day Polymorphic Worms,” Proc. of IEEE International Conference on Network

Protocols (ICNP), pp. 164-173, 2007.

[10] P. K. Manna, S. Chen, and S. Ranka, “Inside the Permutation-Scanning Worms: Propagation

Modeling and Analysis,” IEEE/ACM Transactions on Networking, vol. 18, no. 3, pp. 858-870, 2010.

112 Computer Science & Information Technology (CS & IT)

[11] S. Stafford and J. Li, “Behavior-Based Worm Detectors Compared,” Recent Advances in Intrusion

Detection, pp. 38-57, 2010.

[12] M. Liljenstam, Y. Yuan, B. Premore, and D. Nicol, “A Mixed Abstraction Level Simulation Model of

Large-Scale Internet Worm Infestations,” Proc. of 10th IEEE/ACM Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), 2002.

[13] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet Quarantine: Requirements for

Containing Self-Propagating Code,” Proc. of IEEE INFOCOM, 2003.

[14] S. Staniford, V. Paxson, and N. Weaver, “How to Own the Internet in Your Spare Time,” Proc. of

11th USENIX Security Symposium, 2002.

[15] C. C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation Modeling and Analysis,” Proc.

of ACM CCS, 2002.

[16] M. M. Williamson, “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code,”

Proc. of Annual Computer Security Application Conference, 2002.

[17] R. Dantu, J. W. Cangussu, and S. Patwardhan, “Fast Worm Containment Using Feedback Control,”

IEEE Transactions on Dependable and Secure Computing, vol. 4, no. 2, pp. 119-136, 2007.

[18] O. P. Kreidl and T. M. Frazier, “Feedback Control Applied to Survivability: A Host-Based

Autonomic Defense System,” IEEE Transactions on Reliability, vol. 53, no. 1, pp. 148-166, 2004.

[19] X. Yan and Y. Zou, “Optimal Internet Worm Treatment Strategy Based on yhe Two-Factor Model,”

ETRI journal, vol. 30, no. 1, pp. 81-88, 2008.

[20] S. Zonouz, H. Khurana, W. H. Sanders, T. M. Yardley, et al., “RRE: A Game-Theoretic Intrusion

Response and Recovery Engine,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no.

2, pp. 395-406, 2014.

[21] S. Chen and Y. Tang, “DAW: A Distributed Antiworm System,” IEEE Transactions on Parallel and

Distributed Systems, vol. 18, no. 7, pp. 893-906, 2007.

[22] S. Sharma, U. S. Tim, J. Wong, S. Gadia, and S. Sharma, “A Brief Review on Leading Big Data

Models,” Data Science Journal, vol. 13, pp. 138-157, 2014.

[23] S. Sharma, R. Shandilya, S. Patnaik, and A. Mahapatra, “Leading NoSQL models for handling Big

Data: a brief review,” International Journal of Business Information Systems, 2015.

[24] Y. Zhou, Q. Xiao, Z. Mo, S. Chen, and Y. Yin, “Privacy-Preserving Point-to-Point Transportation

Traffic Measurement through Bit Array Masking in Intelligent Cyber-physical Road Systems,” Proc.

of IEEE International Conference on Cyber, Physical and Social Computing (CPSCom), pp. 826-833,

2013.

[25] Y. Zhou, Z. Mo, Q. Xiao, S. Chen, and Y. Yin, “Privacy-Preserving Transportation Traffic

Measurement in Intelligent Cyber-Physical Road Systems,” IEEE Transactions on Vehicluar

Technologies, 2015.

[26] H. W. Hethcote, “The Mathematics of Infectious Diseases,” SIAM Review, vol. 42, no. 4, pp. 599-

653, 2000.

Computer Science & Information Technology (CS & IT) 113

[27] C. C. Zou, W. Gong, and D. Towsley, “Slowing Down Internet Worms,” Proc. of IEEE International

Conference on Distributed Computing Systems (ICDCS), pp. 312-319, 2004.

[28] Y. Qiao, T. Li, and S. Chen, “Fast Bloom Filters and Their Generalization,” IEEE Transactions on

Parallel and Distributed Systems, vol. 25, no. 1, pp. 93-103, 2014.

[29] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The Variable-Increment Counting Bloom Filter,”

IEEE/ACM Transactions on Networking, vol. 22, no. 4, pp. 1092-1105, 2014.

[30] Y. Zhou, S. Chen, Z. Mo, and Q. Xiao, “Point-to-Point Traffic Volume Measurement through

Variable-Length Bit Array Masking in Vehicular Cyber-Physical Systems,” Proc. of IEEE

International Conference on Distributed Computing Systems (ICDCS), pp. 51-60, 2015.

[31] Y. Zhou, S. Chen, Y. Zhou, M. Chen, and Q. Xiao, “Privacy-Preserving Multi-Point Traffic Volume

Measurement through Vehicle to Infrastructure Communications,” IEEE Transactions on Vehicular

Technologies, 2015.

[32] S. Sharma, U. S. Tim, S. Gadia, R. Shandilya, and S. Peddoju, “Classification and Comparison of

NoSQL Big Data Models,” International Journal of Big Data Intelligence (IJBDI), vol. 2, no. 3, 2015.

[33] S. Sharma, “Evolution of as-a-Service Era in Cloud,” arXiv preprint arXiv:1507.00939, 2015.

[34] T. Li and S. Chen, “Traffic Measurement on the Internet,” Springer Science & Business Media, 2012.

[35] T. Li, S. Chen, and Y. Ling, “Per-Flow Traffic Measurement Through Randomized Counter Sharing,”

IEEE/ACM Transactions on Networking, vol. 20, no. 5, pp. 1622-1634, 2012.

[36] Z. Mo, Y. Zhou, S. Chen, and C. Xu, “Enabling Non-repudiable Data Possession Verification in

Cloud Storage Systems,” Proc. of IEEE International Conference on Cloud Computing, pp. 232-239,

2014.

[37] Z. Mo, Q. Xiao, Y. Zhou,and S. Chen, “On Deletion of Outsourced Data in Cloud Computing,” IEEE

International Conference on Cloud Computing, pp. 344-351, 2014.

[38] Z. Mo, Y. Zhou, and S. Chen, “A Dynamic Proof of Retrievability (PoR) Scheme with O(logn)

Complexity,” Proc. of IEEE International Conference on Communications, pp. 912-916, 2012.

[39] Z. Mo, Y. Zhou, and S. Chen, “An Efficient Dynamic Proof of Retrievability Scheme,” ZTE

Communications, vol. 2, p. 008, 2013.

[40] Q. Xiao, M. Chen, S. Chen, and Y. Zhou, “Temporally or Spatially Dispersed Joint RFID Estimation

Using Snapshots of Variable Lengths,” Proc. of ACM Mobihoc, 2015.

AUTHORS

Yian Zhou received her B.S. degree in computer science and B.S. degree in

economics from the Peking University of China in 2010, and is currently pursuing her

Ph.D. degree in computer and information science and engineering at the University of

Florida, Gainesville, FL, USA. Her advisor is Prof. Shigang Chen. Her research

interests include traffic flow measurement, cyber-physical systems, big network data,

security and privacy, and cloud computing.

114 Computer Science & Information Technology (CS & IT)

You Zhou received his B.S. degree in electronic information engineering from the

University of Science and Technology of China, Hefei, China, in 2013, and is

currently pursuing his Ph.D. degree in computer and information science and

engineering at the University of Florida, Gainesville, FL, USA. His advisor is Prof.

Shigang Chen. His research interests include network security and privacy, big

network data, and Internet of Things.

Shigang Chen is a professor with Department of Computer and Information Science

and Engineering at University of Florida. He received his B.S. degree in computer

science from University of Science and Technology of China in 1993. He received

M.S. and Ph.D. degrees in computer science from University of Illinois at Urbana-

Champaign in 1996 and 1999, respectively. After graduation, he had worked with

Cisco Systems for three years before joining University of Florida in 2002. He served

on the technical advisory board for Protego Networks in 2002-2003. His research

interests include computer networks, Internet security, wireless communications, and

distributed computing. He published more than 100 peer-reviewed journal/conference

papers. He received IEEE Communications Society Best Tutorial Paper Award in 1999 and NSF CAREER

Award in 2007. He holds 11 US patents. He is an associate editor for IEEE/ACM Transactions on

Networking, Elsevier Journal of Computer Networks, and IEEE Transactions on Vehicular Technology. He

served in the steering committee of IEEE IWQoS from 2010 to 2013. He is a senior member of IEEE.

O. Patrick Kreidl has been an Assistant Professor of Electrical Engineering at the

University of North Florida (UNF) since 2011, receiving his S.B. degree (with highest

distinction) from George Mason University (GMU) in 1994 and his S.M. and Ph.D.

degrees from the Massachusetts Institute of Technology (MIT) in 1996 and 2008,

respectively. Past positions include Principal Research Engineer in the Cyber

Operations and Networking Group within BAE Systems' Technology Solutions

Directorate (via acquisition of Alphatech, Inc.), Research Affiliate in MIT's

Laboratory for Information and Decision Systems, Adjunct Professor in GMU’s

Department of Electrical & Computer Engineering as well as engineering positions in the Institute for

Defense Analyses and the Naval Research Laboratory. His current research interests lie at the intersections

of signal processing, stochastic control and optimization (particularly as they interface with algorithms,

computation and statistics) with application to sensor networks, network security and distributed systems.

He is a member of the IEEE.

