

Dhinaharan Nagamalai et al. (Eds) : CCSEA, DKMP, AIFU, SEA - 2015

pp. 11–19, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.50202

A WEB CONTENT ANALYTICS
ARCHITECTURE FOR MALICIOUS

JAVASCRIPT DETECTION

JongHun Jung, Chae-tae Im, Soojin Yoon, hcbae

Internet Incidents Response Architecture Team

Korea Internet & Security Agency

 {jjh2640, chtim, sjyoon, hcbae}@kisa.or.kr

ABSTRACT

Recent web-based cyber attacks are evolving into a new form of attacks such as private

information theft and DDoS attack exploiting JavaScript within a web page. These attacks can

be made just by accessing a web site without distribution of malicious codes and infection.

Script-based cyber attacks are hard to detect with traditional security equipments such as

Firewall and IPS because they inject malicious scripts in a response message for a normal web

request. Furthermore, they are hard to trace because attacks such as DDoS can be made just by

visiting a web page. Due to these reasons, it is expected that they could result in direct damages

and great ripple effects. To cope with these issues, in this article, a proposal is made for

techniques that are used to detect malicious scripts through real-time web content analysis and

to automatically generate detection signatures for malicious JavaScript.

KEYWORDS

Script-based Cyber Attacks; Forward-Proxy Server; Malicious Java Script API; Deep Content

Inspection; API Call Trace.

1. INTRODUCTION

Recent introduction of Ajax and HTML5 technologies has enabled dynamic representation of

web content, providing compatibility between a client and a server in web environment.

However, the efforts to deal with new security vulnerabilities in these technologies, such as the

awareness, countermeasure technology development, and standardization are still insufficient. In

particular, web-based attacks using malicious scripts can bypass traditional security equipments,

such as IDS, IPS and Web Firewall, because, unlike conventional malicious code attacks, they do

not download an executable file directly, but they still can be made by combining normal built-in

APIs in JavaScript. And also, it is getting harder to detect these attacks as they employ traffic

encryption and script obfuscation. The Figure 1 illustrates how a DDoS attack can be made with

JavaScript just by accessing a web page. Furthermore, due to the accelerated introduction of

HTML5, it is expected that cyber attacks exploiting vulnerabilities of new tags and APIs will

grow rapidly.

In this article, a proposal is made for techniques that are used to detect malicious scripts through

collection of HTTP Web traffics and static/dynamic analysis, and to generate a detection

signature automatically. Chapter 2 shows trends in related studies. Chapter 3 describes techniques

12 Computer Science & Information Technology (CS & IT)

that are used to collect and analyze web content for detection of malicious JavaScript. Chapter 4

describes more compact techniques that are used to generate a detection signature automatically

with less false positive rate. Finally, Chapter 4 concludes the article.

Figure 1. A DDoS attack using JavaScript code

2. RELATED WORK

2.1. WebShiled

Using a modified browser that consists of DOM API, HTML/CSS Parser and JavaScript Engine

only, parse web content in proxy, turn it into the form of DOM Structure, and store it. Send the

DOM Structure in the string format to the client. Send a script to the client only if it turns out that

the script is safe after running it in the modified browser. However, prevention of exploitation of

new vulnerabilities in HTML5 is insufficient.

2.2. A signature for Malware Detection

The method of Automatic generation of a signature for malware or worm can be divided into 5

categories: vulnerability-based, content-based, content-shifting, semantic-aware and honeypot-

based. Among these, the content-based is the one that is proposed in this article.

In the content-based method, a signature target set is determined based on traffic and the same

malicious behavior, and then a signature is generated based on the content.

A content-based signature [1] can be divided into Longest Common Substring, Longest Common

Subsequence, Conjunction Signature and Bayes Signature. For the Longest Common Substring

and Longest Common Subsequence, one retrieves the longest common substring and longest

common subsequence respectively from the target set. For the Conjunction Signature, one uses a

set of strings that appear in all targets, as a signature. For Bayes Signature, one checks whether a

string in a sample appears in the malicious, and then determines whether the sample is malicious

or not based on the percentage of malicious strings.

Computer Science & Information Technology (CS & IT) 13

2.3 BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

BIRCH is an algorithm for hierarchical clustering for a large database. BIRCH allows addition of

a new value in a clustered tree as a new entity is added, eliminating the need of re-clustering.

BIRCH creates a CF (Clustering Feature) tree that has distance information for all leaves under a

single node. As a new entity is added, it searches for the closest node. It adds the entity to the

cluster of the closest node if the distance is same or shorter than threshold, or creates a new

cluster and adds the entity to it if the distance is same or longer than threshold.

3. WEB CONTENT ANALYSIS TECHNOLOGY

For real-time detection of malicious JavaScript, one collects HTTP traffics by configuring a

proxy server, and parses a HTML document and crawls a link to external resource in order to

generate content for analysis. One performs static analysis, such as pattern-matching of web

content, and dynamic analysis, such as checking whether obfuscated or not and the HTML5 tag

percentage, to determine if the content is malicious. If a malicious script is found, remove the

function that actually causes malicious behaviors before sending the script to the client. The

Figure 2 shows the proposed system architecture that can be used to detect malicious scripts at

network level.

Figure2. System Architecture for Real-time Detection of Malicious Scripts

It consists of modules: i) Forward-Proxy, ii) Web Content Generation Module, iii) Analytics

Engine (Static/Dynamic Analysis), and iv) System Control Module.

3.1 Forward-Proxy and Content Adapter

For collection of web traffics, Squid-Proxy Server is configured in the in-line form between

clients and Web Server, where all HTTP Request and Response packets are collected and Internet

Content Adaptation Protocol (ICAP) is used to pass the received HTTP traffics to Web Content

Control Module. Then, Web Content Control Module extracts the external JavaScript link data

14 Computer Science & Information Technology (CS & IT)

contained in the document, using HTML Parser received from Proxy Server, and collects

resources for the link with a separate crawler to generate web content for analysis.

3.2 Web Content Analysis

The term ‘web content’ refers to the entire document that includes both a HTML document and

external resources. As shown in the Figure 3, web content goes through the fast static analysis

process that performs pattern-matching based on Yara-RuleSet[2]. However, because some

sources, such as those obfuscated, require additional analysis, they go through the dynamic

analysis process that uses Rihno Browser Engine to run the script and extract call trace data for

detection.

Figure3. Configuration of Web Content Analytics Engine

An input data set is in the format of JSON that consists of a HTML document, external

JavaScript, and meta data (IP, port, protocol, domain, etc.). First, extract the primary key token to

classify the type of the malicious behaviour. Table 1 shows summary of basic keywords

contained in each malicious behaviour

Table 1. Examples of Basic Keywords for Each Malicious Behaviour

Malicious Type The Keyword

DoS

Attack

HashDoS
setInterval, open, send, ActiveXObject, XMLHTTP,

XMLHttpRequest
XML HttpObject DoS

Scan

Attack

Network Scan
open, ActiveXObject, XMLHTTP, XMLHttpRequest, Date,

readyState
Port Scan

Geolocation coords, getCurrentPosition

Web Socket parse, eval, WebSocket, JSON, send

Web Worker DDoS postMessage, Worker, XMLHttpRequest, open, send

Computer Science & Information Technology (CS & IT) 15

Look up the signature for a malicious behaviour and then perform signature-matching check to

determine whether it is malicious or not.

Additionally, score the JavaScript obfuscation and the percentage of HTML5 new tag usage in the

entire document, and then perform dynamic analysis if the score is the same or above the

predetermined level. JavaScript obfuscation check is performed because most of malicious

JavaScript codes are obfuscated, and it is hard to determine whether it is malicious just by doing

signature–matching during static analysis. The Figure 4 illustrates process of the JavaScript

obfuscation check[3]. As these are main characteristics of the obfuscated JavaScript, if a special

character in a JavaScript string is frequently used, if there is a string with abnormal length, or if

the entropy score of characters in the JavaScript is low, score them and if the total score is the

same or above the cutoff, consider it obfuscated and perform dynamic analysis additionally.

Figure4. JavaScript Obfuscation Analysis Process

And also, the usage of HTML5 tags is checked to detect malicious scripts such as jacking or

cross-site scripts exploiting new tags of HTML5 (Canvas, Audio, Video). It has been arranged to

perform dynamic analysis if a weight for each HTML5 tag is applied and the score is the same or

above the predetermined level.

During dynamic analysis in real world situation, a malicious JavaScript is executed using open

source-based Rhino JavaScript Engine with a built-in sandbox, and JavaScript API Call Trace

data is extracted and stored in XML data format.

 The Figure 5 shows the Function Call Trace data for Port Scan malicious JavaScript, converted

to XML format.

16 Computer Science & Information Technology (CS & IT)

Figure 5. Trace Data of a Port Scan Malicious Script

In this article, SimHash Algorithm[4] is proposed for comparison of JavaScript Function Call

Trace similarities. SimHash utilizes Local Sensitive Hashing (LSH) for similarity comparison,

and LSH maximizes conflicts between similar items rather than avoiding them. That is, the

algorithm generates similar results for similar items. Using this function, regardless of the input

value size, generate FingerPrint in an array in bit form just like the outcome of a normal hash

function, and then use the hamming distance to measure the similarity.

4. TECHNIQUE OF GENERATING A SIGNATURE DEDICATED FOR

DETECTION

In this article, the malicious script, malicious type, obfuscation status, meta data and other data

received from the analytics engine are used for automatic generation of signature for malicious

JavaScript. It is proposed that a detection signature can be automatically generated by clustering

with a malicious script from the registered malicious script pool, generating the combined

signature, and refining the signature. Figure 6 illustrates the process of signature generation.

Figure6. Automatic Generation of the Detection Signature for a Malicious Script

Computer Science & Information Technology (CS & IT) 17

4.1 Malicious Script Clustering

In this article, it is proposed to use the script clustering technique for automatic generation of the

detection signature for a malicious script. The goal of clustering is to streamline the signature

itself and improve the false positive rate by grouping malicious scripts showing similar behaviors,

and thus preventing extraction of unnecessary tokens. For each token of malicious JavaScript,

calculate the Term Frequency-Inverse Document Frequency value and vectorize it. The TF-

IDF[5] weight is a statistical figure that is used to evaluate the importance of a certain term in a

document, and it can be calculated as the product of Term Frequency and Inverse Document

frequency.

The Term Frequency simply indicates how often a term appears in the document, and the Inverse

Document Frequency provides general importance of the term.

∑
=

k jk,

ji,

ji,
n

n
ft (1)

� jin , indicates the number of times that Term it appears in document jd .

}{
jii

i
dtd

D
idf

∈
=

:
log (2)

� D indicates Total Document Numbers

� jdtidi ∈: indicates number of documents in which term it appears

iijij idftftfidf *= (4)

� TF-IDF weight is calculated by multiplying the TF and IDF.

Using the vector created with TF-IDF, perform hierarchical clustering in the Complete-linkage

Cluster method. By improving BIRCH Algorithm for hierarchical clustering, quantify the vector

distance and meta data (time similarity, IP, port and protocol), and then take their sum as the

similarity score to determine whether malicious script clustering can be done.

Figure 7 shows the clustering process through modified distance calculation. For clustering

purpose, the score of significant meta data similarity is applied to distance measurements between

basic vectors in order to form a clustering tree.

Figure7. Modified Distance Calculation Formula and Meta Similarity Application

18 Computer Science & Information Technology (CS & IT)

4.2 Generating a Conjunction Signature

 Extract a common token from a malicious script file within the allowed distance in a cluster to

generate a conjunction signature. Convert a token in the same form, such as IP, to a regular

expression before processing. The Table 2 shows the combined signature generated with Port

Scan JavaScript.

Table 2. Examples of Conjunction Signature for Port Scan Detection

output, targetIP, endtime, starttime, ate, appendChild, break, wordWrap, createElement,

onRequest, ActiveXObject, majorPort, (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?) \ \.) {3

}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)XMLHttpRequest, style, open, innerHTML, Array,

XMLHTTP, true, onreadystatechange, restime, Microsoft, Close, send, scanRes,

getElementById

4.3 Refining the Signature and Verifying the False Positive Rate

Verifying performance based on the detection signature generated shows that the number of

unnecessary tokens or the false positive rate grows depending on the number of malicious script

samples. Accordingly, an additional refinement of the signature is carried out by comparing with

a token extracted from a normal web document, and eliminating the one that is duplicate or less

than a certain length (3 characters).

The Table 3 shows the number of tokens and the false positive rate after the signature is refined.

In this specific example, the signature has been compared against 28 malicious JavaScript codes

and 300 JavaScript codes collected randomly for false positive verification. Group 3 shows the

results after signature refinement. It can be seen that the false positive rate and the length of the

signature generated (the number of tokens) have been significantly improved.

Table 3. The Results of Signature Refinement – False Positives

Section Group 1 Group 2 Group 3

Average Detection Rate 100% 100% 100%

Average False Positive Rate 0% 8.8% 0%

Average Number of Tokens 146.7 89.5 115.9

The Number of Groupings 4 JavaScript Codes 9 JavaScript Codes -

Refinement × × ○

5. CONCLUSION

In this article, a proposal has been made for techniques that are used to detect malicious

JavaScript and to automatically generate detection signatures. While it shows good results if the

signatures generated using the proposed techniques are employed to detect malicious scripts and

measure the latency time, it requires additional experiments on a larger pool of samples and

higher volume of traffics. Furthermore, to deal with security vulnerabilities of new APIs in

HTML5, it is planned to expand the scope of the proposed dynamic analysis and conduct related

Computer Science & Information Technology (CS & IT) 19

studies on detection of malicious behaviors by monitoring behaviors caused by JavaScript

running,

ACKNOWLEDGMENT

This work was supported by the ICT R&D Program of MSIP/IITP. [14-912-06-002, The

Development of Script-based Cyber Attack Protection Technology]

REFERENCES

[1] Z. Li, M. Sanghi, Y. Chen, M. Y. Kao, and B. Chavez, "Hamsa: Fast signature generation for zero-

day polymorphic worms with provable attack resilience.", IEEE Symposium on Security and Privacy,

May 2006.

[2] YARA Documentation,http://yara.readthedocs.org/en/latest/index.html

[3] Xu, Wei, Fangfang Zhang, and Sencun Zhu. "The power of obfuscation techniques in malicious

JavaScript code: A measurement study." Malicious and Unwanted Software (MALWARE), 2012 7th

International Conference on. IEEE, 2012.

[4] Charikar, Moses S. "Similarity estimation techniques from rounding algorithms." Proceedings of the

thiry-fourth annual ACM symposium on Theory of computing. ACM, 2002.

[5] K. S. Jones, "A statistical interpretation of term specificity and its application in retrieval", Journal of

Documentation, Vol.28, No.1, 1972, pp.11-21.

