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ABSTRACT 

 

Motivated by the problem of computing investment portfolio weightings we investigate various 

methods of clustering as alternatives to traditional mean-variance approaches. Such methods can 

have significant benefits from a practical point of view since they remove the need to invert a 

sample covariance matrix, which can suffer from estimation error and will almost certainly be 

non-stationary. The general idea is to find groups of assets which share similar return 

characteristics over time and treat each group as a single composite asset. We then apply inverse 

volatility weightings to these new composite assets. In the course of our investigation we devise a 

method of clustering based on triangular potentials and we present associated theoretical results 

as well as various examples based on synthetic data.  

 

KEYWORDS 

 

Clustering, Expected Utility, Graphical Models, k-Clique Problem 

 

 

1. INTRODUCTION 
 

A common problem in finance is the question of how best to construct a diversified portfolio of 

investments. This problem is ubiquitous in fund management, banking and insurance and has led to 

an extensive evolving literature, both theoretical and empirical. From an informal mathematical 

perspective the central challenge is to devise a method for determining weightings for a set of 

random variables such that ex post realisations of the weighted sum optimise some objective 

function on average. The objective function most typically used in financial economics is a 

concave utility function, hence from an ex ante pespective the portfolio construction problem is a 

matter of optimising so-called expected utility.  Koller and Friedman provide a detailed discussion 
of utility functions and decision theory in the general machine learning context [1]. 

 
The theoretical literature analyses many alternative weighting strategies which can be distinguished 
based on such criteria as: (a) the investor’s time horizon (e.g. does utility depend on realisations on 

a single time horizon in a ‘one-shot’ scenario or does uncertainty resolve over multiple time 

periods, affording the investor opportunities to alter portfolio composition dynamically?), (b) the 

nature of the information available to investors regarding the distribution of future returns (this may 

be extremely limited or highly-structured for mathematical expediency), and (c) the investor’s 
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particular utility function (where, for instance, it can be shown that curvature can be interpreted as 
representing the investor’s risk-preferences [2]). 

 
One of the most prominent theoretical results is the concept of mean-variance efficiency which has 

its roots in the work of Markowitz [3]: the idea is that in a one period model (under certain 

restrictive assumptions) if investors seek to maximize return and minimise portfolio variance, the 

optimal ex ante weighting vector w  is given by  

 

 )(
1

= 1 ιµ
λ

rw −Ω−
 (1) 

 

where Ω  is the covariance matrix of future returns, µ  is the mean vector of expected returns, λ  

is a risk-aversion parameter and r  is the risk-free rate of return [4]. A key aspect of this formula is 

the dependency on the inverse of the covariance matrix which is never known with certainty and 

will in practice be a forecast in its own right (and the same will be true for µ and quite possibly r ). 

When deploying this formula in real-world investment, practitioners are divided over how to 

account for parameter uncertainty, with a number of alternative approaches in common usage 

(including ignoring uncertainty entirely). 

 
Unfortunately it is widely recognised that the exact weightings in (1) have a sensitivity to 

covariance assumptions which is unacceptably high; in other words small changes in covariance 

assumptions can lead to large changes in prescribed weightings. Further significant concerns are 

raised by the fact that long time series are required to generate acceptable estimates for a large 

covariance matrix but financial returns series are notoriously non-stationary – it is therefore easy 

for an analyst to fall into the trap of thinking that they are applying prudent statistical methods when 

in reality their input data may be stale or entirely inappropriate. The forecasting of expected returns 

is also regarded as an exceptionally difficult task. 

 
In these circumstances one strand of literature considers simpler weighting schemes which are 

predicated on relatively few assumptions; one prominent example, popular with practitioners, is the 

self-explanatory equally-weighted (or 
n

1
) approach [5]. This method requires no explicit forecasts 

of correlation or returns and it can be shown that this is equivalent to mean-variance methods if the 

correlation between all possible pairs of investments is equal, along with all means and variances. 

Although this may be far from the truth it may be more innocuous to assume this than to suffer 

potentially negative effects of erroneous statistical forecasts and there is a body of empirical 

literature which demonstrates the efficiency of the approach [6]. Refinements to the basic method 

can include weighting each asset by the inverse of the forecast standard deviation of its returns 

(known as volatility) which allows some heterogeneity to be incorporated. 

 
Nevertheless it is intuitively obvious that such a simple method presents potential dangers of its 

own, and is particularly inappropriate when the universe of alternative investments contains 
subgroups of two or more investments which are highly correlated with each other. Suppose, for 

instance, a portfolio of investments in world stock market indices which includes several 

alternative indices for the United States (e.g. Dow Jones, S&P 500, Russell 2000) but only single 

indices for other markets (e.g. the CAC-40 for France, FTSE-100 for UK, etc.). In this setting the 

n

1
 approach may (arguably) significantly overweight US equities in comparison to each foreign 

market and in general regional weightings will be more dependent on the cardinality of available 

indices than any economic properties of the markets. In a systematic investment process it is clearly 
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impractical to have analysts manually sift through investments to ensure an appropriate ‘balance’ 
(which defeats the object of a weighting algorithm) and indeed potential diversification benefits 

argue in favour of including a broad range of investments anyway. 

 
The contribution of this paper is to explore potential weighting methods based on clustering, such 

that highly ‘similar’ investments can be identified, grouped together and treated (for weighting 

purposes) as if they are a single ‘composite’ investment. By contrast, investments which exhibit 

relatively little similarity to each other are treated individually in their own right. Our focus here is 

on a process for identifying clusters rather than evaluation of  ex post investment performance, 

which we leave for a separate analysis, and in fact we draw attention to the applicability of our 

methods to fields beyond finance where clustering may be required, e.g. well-known problems in 

biology, medicine and computer science. We also present an intriguing theoretical result arising 

from our work, which emphasises limitations of certain clustering techniques and may help to 

guide other researchers in their search for suitable methods. 

 
The paper is organised as follows: in Section 2 we formally specify the problem at hand, in Section 

3 we demonstrate spectral clustering as a preliminary benchmark approach and in Section 4 we 

explore an alternative method based on a graphical model where we propose a specific estimation 

technique involving triangular potentials and provide illustrative examples. Section 5 briefly 

considers extension to a more dynamic setting (via a Hidden Markov Model) and Section 6 

concludes. 

 

2. PROBLEM SPECIFICATION 
 

Definition 1 Let   n ∈ N, define },{1,=][ nn Λ  the set of natural numbers from 1 to n .  

Let }{,},{ 1 ntt Λ  be n  time series, where },,{=
1 m

iii ttt Λ  for N∈nm, . 

 
Definition 2 Clustering. 

A clustering of }{,},{ 1 ntt Λ  is an equivalence relation   ~  over },{1,=][ nn Λ  such that:   

    1.  Reflexivity: If   i ~ j  then   j ~ i.  

    2.  Transitivity: If   i ~ j  and   j ~ k  then   k ~ i .  

 
Definition 3 Time dependent clustering. 

We say   i~
k

j  if i  and j  are clustered at time k .  

Our aim is to find a sequence   {~
k

}k =1

m
, i.e. we allow the nature of the clustering relation to evolve 

over time. 

 

We denote the distance between series at time k  as ),( ji

k ttd  for all ji,  and the similarity at 

time k  defined as ),( ji

k tts . The functions 
kk

sd ,  are specified by the user of the algorithm and 

may be chosen based on prior domain-specific knowledge, or perhaps by a more systematic process 

of searching across alternative specifications guided by out-of-sample performance. 

 
Definition 4 Distance Matrix. 

Given a family of time-dependent distance functions 
m

k

k
d 1=)},({ ⋅⋅ , we define a family of distance 

matrices as )},({=, ji

kk

ji ttdD .  
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Definition 5 Similarity Matrix. 

Given a family of time-dependent similarity functions 
m

k

k
s 1=)},({ ⋅⋅ , we define a family of similarity 

matrices as )},({=, ji

kk

ji ttsS .  

 
Definition 6 Similarization function. 

We say [0,1]: →+Rz  is a similarization function if for any distance function +→× RRR
n

d :

, dz ο  is a valid similarity function.  

 
In what follows we restrict our attention to reflexive and non-negative distance and similarity 

functions and thus to symmetric similarity and distance matrices. We will also use the variable n  

to represent the number of data points observed at each time step when the clustering algorithm will 

be applied. 

 

3. SPECTRAL CLUSTERING 
 

Here we introduce the Spectral Clustering algorithm, which is suitable for data where the cluster 

structure does not change over time. Later in the paper we will compare the performance of our 
proposed approach with this benchmark method. 

 

Definition 7 The Laplacian matrix L  of a similarity matrix S  is defined as follows:  

 2

1

2

1

=
−−

− DD SIL  

where ijjii S∑=D . 

The most basic spectral clustering algorithm for bipartition of data is the Shi Malik bipartition 

algorithm which we describe below. 
 

3.1. Shi Malik algorithm 
 

Given n  items and a similarity matrix 
nnS ×∈R , the Shi Malik algorithm bipartitions the data 

into two sets ),( 21 BB  with ][=21 nBB ∪  and ∅∩ =21 BB  based on the eigenvector v  

corresponding to the second smallest eigenvalue of the normalized Laplacian matrix L  of S . 

 
Algorithm 1  The Shi Malik bipartition algorithm:  

  
    1.  Compute the Laplacian from a similarity matrix.  
    2.  Compute the second smallest eigenvalue and its corresponding eigenvector v .  
    3.  Compute the median m  of its corresponding eigenvector.  

    4.  All points whose component in v  is greater than m  are allocated to 1B , the remaining 

points are allocated to 2B  . 

 
Unfortunately the Shi Malik algorithm is not a dynamic procedure, i.e. it is not intended to identify 

an underlying cluster structure which is time-varying. However various clustering approaches are 

available which specifically seek to address this and we outline one such approach next. 
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3.2. A generalized spectral clustering approach 
 

The following algorithm is an extension of the Shi Malik algorithm that can handle two or more 

clusters. It can be found at [7]. Given n  items and a similarity matrix 
nnS ×∈R  the goal of 

Dynamic Spectral Clustering is to find a clustering   ~  of ][n . 

 
Algorithm 2  Dynamic Spectral Clustering   

 

1. Compute the Laplacian of the similarity matrix.  

2. Compute the Laplacian’s eigenvalues and eigenvectors  

3. Let c  be a desired number of clusters.  

4. Find the eigenvectors of the corresponding eigenvalues found on the previous step. Let the  

corresponding cn×  matrix be called V .  

5. Rotate V , by multiplying it with an appropriate rotation matrix R  so each of the 

corresponding rows of VRZ =  have (ideally) only one nonzero entry. In reality the 

resulting matrix we will use the largest (in absolute value) entry of the matrix. R  is a 

rotation matrix in 
ccR ×

.  

6. The cluster to which point i  is assigned is ||maxarg ,},{1, jicj ZΛ∈ .  

 
In order to find an appropriate rotation matrix R , there is a theorem that guarantees that any 

rotation matrix 
cc

RR
×∈  can be written as a product kGG ⋅⋅Λ1  where k =

c(c −1)

2
 and each 

iG  equals a Givens rotation matrix. 

 

Givens rotation matrices ),,( θjiG  are parameterized as follows:  
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Hence for each iG  there is an associated angle iθ  and we represent these k  angles by the vector 

1)/2( −∈Θ cc
R . In order to find the optimal Θ  for a given number of clusters c , we use gradient 

descent on the following objective function:  

 

2

1=1=

=min 







∑∑

Θ
i

ij
c

j

n

i M

Z
J  

subject to the constraint  

 .)(= cccncn RVZ ××× Θ  

Following [7] we set ||max= ijji ZM . 
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As suggested by [7], the optimal number of clusters can be obtained by choosing the value of c  

that maximizes a scoring function given by  

 

 .11=),( 







−−

n
ncq

J

 
3.2.1. A dynamic clustering algorithm 
 

Given a family of time dependent similarity functions 
m

k

k
s 1=)},({ ⋅⋅  defining a family of similarity 

matrices )},({=, ji

kk

ji ttsS , an optimal time-varying clustering structure   ~
k

 can be estimated by 

applying Algorithm 2 at time k  using input similarity matrix 
k

jiS , . Hence for time series data we 

propose the following algorithm: 

 

Algorithm 3 Let }{,},{ 1 ntt Λ  be n  time series. Where },,{=
1 m

iii ttt Λ  for N∈nm, . Let 

N∈w  be a window parameter, +→×⋅⋅ RRR
ww

d :),(  be a distance function and 

[0,1]: →+Rz  be a similarization function. 

1. Let 
m

ijD  be the distance matrix having  

]),,[],,,([=
11

,
m

j
wm

j
m

i
wm

i

m

ji ttttdD ΛΛ
+−+−  

for every pair ][, nji ∈ .  

2. Let 
m

jiS ,  be the similarity matrix having )(= ,,

m

ji

m

ji DzS  for every pair ][, nji ∈ .  

3. Let   ~
m

 be the clustering resulting from running Algorithm 2 with input similarity matrix 
m

jiS , .  

4. Output clustering   ~
m

.  
 
Extensions of this approach include considering a geometric decay factor in the distance 

computation, alternative distance functions and different similarization functions. We tried various 

combinations as shown in Table 1 but found no significant improvement on the stability of the 

resulting clusters. 

 

We did not consider a scenario where the distance or similarization functions change through time 

although there may be certain applications where this might be appropriate.  
 

 Table 1: Alternative distance and similarity functions. The second similarity function is a generalization of 

the first. 

 Distances   
1

L  norm   
2

L  norm  

  

Similarities   exp −
x1

x1

−
x2

x2

 

 
  

 

 
     exp −c⋅

x1

x1

−
x2

x2

 

 
  

 

 
  
 

set to zero when it achieves 

values less than λ  for 

different combinations of λ,c
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3.3. Overview 
 

We present the performance of this algorithm in Figure 1. Some of the observed characteristics of 

this method are the following: 

 
• The resulting clustering values are notably sensitive to the similarity function used in the model.

• The clustering structure estimated by this method tends to be relatively unstable over time. 

Although in some applications this may be plausible, in the context of financial time series we have 

a strong prior belief that clusters typically arise due to com

fundamentals (e.g. similar commodities, currency pairs belonging to close trading partners, etc.) 

which would tend to change very slowly relative to the frequency of market data.

   
 

 
 

 

 

 

 

 

Figure 1: Performance of the spectral clustering algorithm on 5,000 periods of synthetic data with

each time step we generate random standard normal variates which are common to each cluster, then for each 

of the 3 returns we add independent Gaussian noise with 

cluster therefore have a large portion of randomness in common, but each observation also includes its own 

independent noise. The cluster structure is randomly changed over time and represented by coloured b

each row, i.e. all columns with the same colour belong in the same cluster.

    

4. GRAPHICAL MODEL A
 

Instead of representing clusterings as a binary matrix 

j  as the authors of [8] do, we approach the problem in a different way. Consider a symmetric (

ijji CC ,, = ) family of Bernoulli random variables, 

 
 

€ 

Ci, j =

 

We wish to learn a distribution over the ensemble 

is the following:  

 

 

 

where S  is a similarity matrix; in other words, we consider that the observed si

pair of points will come from one of two distributions, depending on whether or not the two points 

belong to the same cluster. 

 

In what follows it will be useful to think of the matrix 

graph ),(= EVG  where [=V

nodes that are in the same cluster. Learning a distribution over 

a distribution over the set of undirected graphs 
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We present the performance of this algorithm in Figure 1. Some of the observed characteristics of 

The resulting clustering values are notably sensitive to the similarity function used in the model.

The clustering structure estimated by this method tends to be relatively unstable over time. 

Although in some applications this may be plausible, in the context of financial time series we have 

a strong prior belief that clusters typically arise due to common factors relating to economic 

fundamentals (e.g. similar commodities, currency pairs belonging to close trading partners, etc.) 

which would tend to change very slowly relative to the frequency of market data. 

ctral clustering algorithm on 5,000 periods of synthetic data with

each time step we generate random standard normal variates which are common to each cluster, then for each 

of the 3 returns we add independent Gaussian noise with a relatively small variance. The members of each 

cluster therefore have a large portion of randomness in common, but each observation also includes its own 

independent noise. The cluster structure is randomly changed over time and represented by coloured b

each row, i.e. all columns with the same colour belong in the same cluster. 

APPROACH 

Instead of representing clusterings as a binary matrix ),( jiZ  such that 1=),( jiZ  if 

as the authors of [8] do, we approach the problem in a different way. Consider a symmetric (

) family of Bernoulli random variables, ][,, }{= njijiC ∈C  such that:  

1 if i, j are in the same cluster,  or 0 otherwise.  

We wish to learn a distribution over the ensemble }{= , jiCC . The model we will use in this paper 

S→C  

is a similarity matrix; in other words, we consider that the observed similarity between a 

pair of points will come from one of two distributions, depending on whether or not the two points 

In what follows it will be useful to think of the matrix }{ , jiC  as an adjacency matrix. The resulting 

][n  and 1}=|),{(= , jiCjiE , has an edge between every two 

nodes that are in the same cluster. Learning a distribution over }{ , jiC  can be thought of as learning 

a distribution over the set of undirected graphs ),( EV  with ][= nV . 
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We present the performance of this algorithm in Figure 1. Some of the observed characteristics of 

The resulting clustering values are notably sensitive to the similarity function used in the model. 
The clustering structure estimated by this method tends to be relatively unstable over time. 

Although in some applications this may be plausible, in the context of financial time series we have 

mon factors relating to economic 

fundamentals (e.g. similar commodities, currency pairs belonging to close trading partners, etc.) 

ctral clustering algorithm on 5,000 periods of synthetic data with 3=n : at 

each time step we generate random standard normal variates which are common to each cluster, then for each 

a relatively small variance. The members of each 

cluster therefore have a large portion of randomness in common, but each observation also includes its own 

independent noise. The cluster structure is randomly changed over time and represented by coloured bars in 

if ∈i  cluster 

as the authors of [8] do, we approach the problem in a different way. Consider a symmetric (

. The model we will use in this paper 

milarity between a 

pair of points will come from one of two distributions, depending on whether or not the two points 

as an adjacency matrix. The resulting 

, has an edge between every two 

t of as learning 
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The goal of this section is to compute the following posterior:  

 

 ).|( SP C  

 

The algorithms we present here output )|(maxarg SPC CC∈ , the MAP estimator for the posterior. 

A short algebraic manipulation (Bayes Theorem) yields: 

 

 .
)(

)()|(
=)|(

SP

PSP
SP

CC
C

⋅
 

Since S  is fixed:  

 ).()|(maxarg=)|(maxarg CCC
CC

PSPSP
CC ∈∈

 

 

In the following two sections we present different models for inference on the ensemble C , their 

performance and their relationship to clusterings. 

 
The training data will be:   

 

    1.  A set of similarity matrices 
m

i

k

jiS 1=, }{ .  

    2.  The set of corresponding clusterings   {~
k

} produced via a clustering algorithm such as the 

ones described earlier in Section 3.  

 

4.1. Exponential model 
 

As a starting point we propose the following model for the ensemble C , in which we impose 

conditional independence assumptions between observed similarities. We therefore assume the 

following factorization: 

 

 )(),(
)(

1
=),(

)(

1
=)|( ,

2

,,

1

, jijijiji CSC
SZ

S
SZ

SP ΨΨΦ ∏CC  

 

 )(),(=)( ,

2

,,

1

, jijijiji

C

CSCSZ ΨΨ∏∑
∈C

 

 

In this model we assume )|(=),( ,,,,

1

, jijijijiji CSPSCΨ , and )(=)( ,,

2

jiji CPCΨ . This is 

equivalent to assuming full pairwise independence of the variables 
jiC ,  and the conditionals 

)|( ,, jiji CSP . 

 

For implementational purposes we assume jiji SC ,, →  are exponentially distributed and the jiC ,  

are Bernoulli random variables. 

 
4.1.1. Training 
 

  {~
k

} can be translated into a training sequence of ensemble values }{ k
C  via the transformation 
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1=,

k

jiC  if   

€ 

i~
k

j . Because of the independence assumptions underlying this model, the ML 

estimate for the posterior distribution of the ensemble can be computed by obtaining the ML 

estimate for each of the distributions 

parameter of )|( ,, jiji CSP  equals the inverse of the sample mean, and the ML estimate for the 

mean of )( , jiCP  equals the sample frequency of 

 

Observation 1 Define ji
m

,

1
=λ

 
The ML estimator of the parameters for the posterior distribution 

)|(
)(

1
=)|( ,, CC PSP

SP
SP jiji

€ 

 

4.1.2. Prediction 

 

Prediction under this model is performed by finding the MAP assignment for the ensemble 

and turning it into a clustering

)()|( ,,, jijiji CPCSP  independently:

 

 

 

For the ensemble assignment 
*C

component of the graph corresponding to 

 

   
 

 

 

 

 

 

 

 

Figure 2: Performance of the exponential model on 5,000 periods of synthetic data with 

    
The prediction algorithm is linear.

 
4.1.3. Limitations 
 

Consider the following joint posterior distribution over clusterings of 
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. Because of the independence assumptions underlying this model, the ML 

estimate for the posterior distribution of the ensemble can be computed by obtaining the ML 

estimate for each of the distributions )|( ,, jiji CSP  and )( , jiCP . The ML estimate for the rate 

equals the inverse of the sample mean, and the ML estimate for the 

equals the sample frequency of 1=, jiC . More formally: 

k

jik
S ,∑ . And let 

k

jikji C
m

p ,,

1
= ∑ . 

The ML estimator of the parameters for the posterior distribution 

)(CP  has 
  

€ 

P(Si, j | Ci, j ) ~ exp(λi, j )  and jiCP , 1)=(

Prediction under this model is performed by finding the MAP assignment for the ensemble 

nd turning it into a clustering. 
*

C  is obtained by maximizing each likelihood 

independently: 

).()|(maxarg= ,,,
{0,1}

,

*

, jijiji

ji
C

ji CPCSPC
∈

 

*
 we output a clustering composed of a cluster for each connected 

component of the graph corresponding to 
*C . Results are presented in Figure 2. 

 

2: Performance of the exponential model on 5,000 periods of synthetic data with 

The prediction algorithm is linear. 

Consider the following joint posterior distribution over clusterings of {1,2,3} . 
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. Because of the independence assumptions underlying this model, the ML 

estimate for the posterior distribution of the ensemble can be computed by obtaining the ML 

. The ML estimate for the rate 

equals the inverse of the sample mean, and the ML estimate for the 

The ML estimator of the parameters for the posterior distribution 

jip ,=1) .  

Prediction under this model is performed by finding the MAP assignment for the ensemble 
*C  

is obtained by maximizing each likelihood 

we output a clustering composed of a cluster for each connected 

2: Performance of the exponential model on 5,000 periods of synthetic data with 3=n . 
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The marginals 

€ 

p((1,2)),p((2,3))

 

4.2. Triangular Potentials 
 
The main limitation of the approach described in the previous section is that there is potential for 

spurious large clusters to emerge solely from the independent optimization of the potentials. If the 

marginal probability jip ,  is large, 

regardless of the values of any of the other similarities 

also possible for the algorithm to suggest cluster shapes which are intuitively implausible (and do 

not conform to prior notions of cluster structure which may be appropriate to a particular domain); 

we illustrate this in Figure 3. 
 

 
 

 

 
 

 

 

 

 

 

Figure 3: Alternative cluster structures: (top to bottom) the first implausible configuration is ruled

use of triangular potentials, however the second and third configurations are possible (which is our 

       
We therefore proceed to address these issues by a modification to the basic model as described by 

the following observations: 

 

Observation 2 C  is a valid clustering 

€ 

1=1== ,,, ikkjji CCC ⇒ .  

 

Observation 3 C  is a valid clustering if the graph whose adjacency matrix equals 

composed of a disjoint union of cliques. 

 
In this section we assume the following factorization:

 

 
(

1
=)|(

SZ
SP C
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p(⋅) =

0.1 if  ⋅ = (1,2,3)

0.41 if  ⋅ = (1,2),(3)

0.41 if  ⋅ = (1,3),(2)

0 if  ⋅ = (2,3),(1)

0.17 if  ⋅ = (1),(2),(3)

 

 

 
  

 

 
 
 

 

3)) > 0.5. The current algorithm will output (1,2,3)

The main limitation of the approach described in the previous section is that there is potential for 

spurious large clusters to emerge solely from the independent optimization of the potentials. If the 

is large, it is likely that the MAP of the ensemble C  will have 

regardless of the values of any of the other similarities mkS ,  or clustering assignments 

algorithm to suggest cluster shapes which are intuitively implausible (and do 

not conform to prior notions of cluster structure which may be appropriate to a particular domain); 

 
3: Alternative cluster structures: (top to bottom) the first implausible configuration is ruled

, however the second and third configurations are possible (which is our 

deliberate intention). 

ed to address these issues by a modification to the basic model as described by 

is a valid clustering   ~  if, for all triplets of distinct numbers , ji

is a valid clustering if the graph whose adjacency matrix equals 

composed of a disjoint union of cliques.  

In this section we assume the following factorization: 

),(
)

1
S

S
CΦ′  

. 

The main limitation of the approach described in the previous section is that there is potential for 

spurious large clusters to emerge solely from the independent optimization of the potentials. If the 

will have 1=, jiC  

or clustering assignments mkC , . It is 

algorithm to suggest cluster shapes which are intuitively implausible (and do 

not conform to prior notions of cluster structure which may be appropriate to a particular domain); 

3: Alternative cluster structures: (top to bottom) the first implausible configuration is ruled-out by the 

, however the second and third configurations are possible (which is our 

ed to address these issues by a modification to the basic model as described by 

][, nkj ∈ , 

is a valid clustering if the graph whose adjacency matrix equals C  is 
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where 

 Ψi, j,k

3
(Ci, j ,Ci,k ,C j,k ) =

0 if Ci, j = Ci,k =1,C j ,k = 0

0 if Ci, j = C j,k =1,Ci,k = 0

0 if Ci,k = C j,k =1,Ci, j = 0

1 otherwise

 

 

 
 

 

 
 

 

 

This has the effect of turning ),( SCΦ  into a potential function ),( SCΦ′  such that all the 

assignments of the joint distribution of the ensemble C  with a nonzero probability are valid 

clusterings. 
 
4.2.1. Training algorithm 

 

We use the same construction for the univariate and bivariate potentials as the one used in the 

previous section. The distribution over clusterings will vary because the triangular potentials 

restrict the mass of the distribution to the space of valid clusterings. It is of course also possible to 

add other potentials relating different sets of clustering variables although we leave that direction 

for future research. 
 
4.2.2. Prediction algorithms 

 

This model can be thought of as an undirected graphical model with variables }{ , jiC  for ji <  

and ][, nji ∈  and edges kiji CC ,, , , kjji CC ,, , and jikj CC ,, ,  for all kji << . If the variable 

jiC ,  is identified with the point ),( ji , then there is an edge between every two variables on the 

same vertical line and between every two variables on the same horizontal line. 

 
We tackle the problem of obtaining the MAP assignment over clusterings under this model using 

either the Elimination Algorithm or MCMC. To obtain an estimate for the MAP assignment using 

MCMC we sample from the posterior and output the clustering arrangement which appears most 

often. The MCMC chain construction is described in the next section. 

 

By construction there is a clique of size 1−n  along the horizontal line )(1, i  for ni ,2,= Λ As a 

consequence, the elimination algorithm has an exponential running time over this graphical model. 

Similarly, there are no easy theoretical guarantees for the performance of the MCMC method. In 

particular, it is possible for the probability mass over the optimal assignment to be so small that 

there are no concentration inequalities to guarantee that the proposed algorithm will output the 

MAP with high probability in polynomial time. 

 
In the following section we show this behavior is not only a result of the graphical model 

formulation or our proposed algorithm but an intrinsic limitation of the model itself. 
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4.3. Results and Limitations 
 

We next apply the classic sumproduct algorithm or the MAP elimination algorithm to find the best 

clustering, with results shown in Figure 4, however the drawbacks are that this solution becomes 

intractable as the number of products becomes large. The elimination algorithm could be worst case 
2

2
n

 which becomes intractable quite fast.

 

   
 

 

 

 

 

 

 
 

Figure 4: Performance of the graphical model with triangular potentials; 

4.3.1. Theoretical limitations 
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Define a distribution over simple graphs via
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Let ˆ P (G) = P(G | G is a disjoint union of cliques
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Since it is conceivable that any arrangement of the values 

the two problems are equivalent. 
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It is easy to see that finding the MAP assignment for the distribution defined via Equation (2)

equivalent to finding the MAP assignment for )(ˆ GP  with: 
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Since it is conceivable that any arrangement of the values jip ,
ˆ  can result from the training data, 

the two problems are equivalent.  

We next apply the classic sumproduct algorithm or the MAP elimination algorithm to find the best 

ults shown in Figure 4, however the drawbacks are that this solution becomes 

intractable as the number of products becomes large. The elimination algorithm could be worst case 
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Theorem 1 If there is a polynomial time algorithm for finding the MAP assignment over )(ˆ GP  

then P = NP.  

 

Proof. Let })ˆ({ , jipA  be an algorithm for finding the MAP over the distribution )(ˆ GP  as 

defined by }ˆ{ , jip . We show A  can be used to construct an algorithm for solving the −k clique 

problem. The −k clique problem is the problem of deciding whether a graph ),(= EVG  has a 

clique of size k  where both G  and k  are inputs to be specified. If A  was polynomial, the 

algorithm we propose for −k clique would run in polynomial time. Because −k clique is NP 

complete we conclude the existence of A  would imply P = NP.  The following algorithm solves 

−k clique: 

 

Algorithm 4 Inputs: >,< kG . 

Let |}|2,2||{2max> VEN +⋅  and 
2

1
>q . 

  

    1. Construct ),(= EVG ′′′  with 
NVVV ∪′ =  and 

},,|},{{},|},{{= 2121212121 vvVvvvvVvVvvvEE NN ≠∈∪∈∈∪′ . The edges of G′  equal all 

edges in G , plus all possible edges between V  and NV  and all possible edges among elements 

of NV .  

    2.  For all pairs |][|, Vji ′∈  define:  

 


 ∈/

otherwise

,if0
=ˆ

,
q

Eji
p ji  

    3.  Let 
*

Ê  be the output edges in the MAP assignment from })ˆ({ , jipA .  

    4.  If kEE ≥∩ |)ˆ(MaxClique| *
 output 1, else output 0 . This step runs in polynomial time 

because every connected component of EE ∩*ˆ  is a clique graph.  
  
The probability of the MAP assignment equals  

 

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









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



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
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)ˆ(1ˆ
,

*ˆ),(

,
*ˆ),(

ji

Eji

ji

Eji

pp  

which can be written as a product 
***

VVNN PPP ×⋅  of the product of the chosen probabilities of pairs 

belonging to NN VV × , a cross component of probabilities from VVN ×  and a component of 

probabilities from VV × . By construction, the edges in VV ×  but not in E  are not chosen. The 

MAP restricted to NV  and V  is a disjoint union of cliques. Because 
1/2||*

<
−≤ NE

V qqP  we can 

conclude:   

 

    1.  The MAP assignment restricted to NV  must be a complete graph: Suppose the MAP 

restricted to NV  had more than one component, say rKK ,,1 Λ , |||| 1 rKK ≥≥ Λ  with 

11

1 ,, rKK Λ  their (possibly empty) corresponding clique intersections in V . It can be shown via 

the rearrangement inequality that the MAP must have |||| 11

1 rKK ≥≥ Λ . Let MAP1 be the 

assignment obtained via joining rKK ,,1 Λ  into NK  (the complete graph on NV ) and 
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reconnecting all to 
1

1K . If 

)(edges)(edges
1=

KK i

r

iN ≥−∑
)MAP(>)MAP1( PP , a contradiction. 

 

    2.  The VVN ×  edges must connect 

 
 The correctness of the algorithm follows. The algorithm above runs in polynomial time, provided 

A  is in P. 

  

5. EXTENSIONS 
 

5.1. HMM 
 

Because the training procedure we propose is done over fully annotated data, more sophisticated 
and time-dependent models can be explored. We propose a generalization of the previous models 

via an HMM. 

 
In this model, each hidden state is a clustering and the transition probabilities are obtained from the 

sampled frequencies of the transitions in the 

data are known, the ML estimate of the transition probabilities of an HMM equals the transitions 

sample frequencies. 

 
The results of applying this method are show

performance is achieved. 
   

 

 

 

 

 

 

 

 

Figure 5: Performance of the HMM clustering algorithm on 2,000 periods of synthetic data with 

    

The version implemented here is hard

clustering states. The length of the chain can be adjusted as desired.

 

5.2. Coagulation Fragmentation
 

The underlying chain for the MCMC sampler uses a fragmentation coagulation process to walk 

over clusterings. At each step, the chain either selects a random cluster, and divides it into two, or 

selects two random clusters and joins them together. The acceptance/rejection probabilities can be 

computed with respect to any coagulation fragmentation p

either a uniform random cluster and a random bipartition of it (fragmentation), or a uniform random 

pair of clusters (coagulation). We believe the mixing time of this process should be fast as it is 
related to a coagulation fragmentation process known as the random transposition walk. Diaconis 

and Shahshahani provided a polynomial upper bound for this walk’s mixing time [9].
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. If 2≥r , a simple counting argument shows that 

2

N
. The latter, and ||||

11

1 rKK ≥≥ Λ  

, a contradiction.  

edges must connect NV  with one of the largest cliques of G . 

The correctness of the algorithm follows. The algorithm above runs in polynomial time, provided 

Because the training procedure we propose is done over fully annotated data, more sophisticated 
dependent models can be explored. We propose a generalization of the previous models 

In this model, each hidden state is a clustering and the transition probabilities are obtained from the 

sampled frequencies of the transitions in the training phase. When the hidden states of the training 

data are known, the ML estimate of the transition probabilities of an HMM equals the transitions 

The results of applying this method are shown in Figure 5, where it is apparent that relatively good 

5: Performance of the HMM clustering algorithm on 2,000 periods of synthetic data with 

The version implemented here is hard-coded for only 3  series and therefore only 

clustering states. The length of the chain can be adjusted as desired. 

Coagulation Fragmentation 

The underlying chain for the MCMC sampler uses a fragmentation coagulation process to walk 

er clusterings. At each step, the chain either selects a random cluster, and divides it into two, or 

selects two random clusters and joins them together. The acceptance/rejection probabilities can be 

computed with respect to any coagulation fragmentation process. In our implementation, we pick 

either a uniform random cluster and a random bipartition of it (fragmentation), or a uniform random 

pair of clusters (coagulation). We believe the mixing time of this process should be fast as it is 
lation fragmentation process known as the random transposition walk. Diaconis 

and Shahshahani provided a polynomial upper bound for this walk’s mixing time [9].

, a simple counting argument shows that 

 imply that 

.  

The correctness of the algorithm follows. The algorithm above runs in polynomial time, provided 

Because the training procedure we propose is done over fully annotated data, more sophisticated 
dependent models can be explored. We propose a generalization of the previous models 

In this model, each hidden state is a clustering and the transition probabilities are obtained from the 

training phase. When the hidden states of the training 

data are known, the ML estimate of the transition probabilities of an HMM equals the transitions 

t relatively good 

5: Performance of the HMM clustering algorithm on 2,000 periods of synthetic data with 3=n . 

series and therefore only 5  possible 

The underlying chain for the MCMC sampler uses a fragmentation coagulation process to walk 

er clusterings. At each step, the chain either selects a random cluster, and divides it into two, or 

selects two random clusters and joins them together. The acceptance/rejection probabilities can be 

rocess. In our implementation, we pick 

either a uniform random cluster and a random bipartition of it (fragmentation), or a uniform random 

pair of clusters (coagulation). We believe the mixing time of this process should be fast as it is 
lation fragmentation process known as the random transposition walk. Diaconis 

and Shahshahani provided a polynomial upper bound for this walk’s mixing time [9]. 
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5.2.1. Alternative model 
 

We believe a worthwhile alternative to the ideas described above is to represent the clustering 

evolution as an HMM on fragmentation-coagulation parameters: the simplest model having only 

two parameters ),( qp , one controlling the probability of fragmentation and the other controlling 

the probability of coagulation. If the number of fragmentation-coagulation parameters is small, 

inference could be tractable. 

 

6. CONCLUSIONS 
 

Our intention in this paper has been to show how various clustering methods can be applied to 

datasets which arise in financial markets. We have documented the process by which we analysed 

the problem and considered a method for determining clusters using triangular potentials. This 

latter method can be computationally intensive and we have provided some preliminary theoretical 

results concerning its limitations. However, notwithstanding these considerations, we have found 

promising empirical results from applying the method to simulated datasets and we look forward to 

extending this to real-world data in due course. 

 
In future work we aim to extend the idea to a setting where we place a non-uniform prior on 
clusterings, e.g. if expert knowledge suggests that a group of investments are likely to share similar 

return characteristics then we can configure potentials such that appropriate weighted links are 

established among these products. 

 
There is also considerable scope to investigate efficiency improvements to the MCMC estimation 

process, based on the particular structure of potentials in this context. 
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