

David C. Wyld et al. (Eds) : CCSIT, SIPP, AISC, NLP - 2015

pp. 89–97, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.50409

IMPROVEMENT WSD DICTIONARY USING

ANNOTATED CORPUS AND TESTING IT

WITH SIMPLIFIED LESK ALGORITHM

Ahmed H. Aliwy
1
 and Ayad R. Abbas

2

1
Department of Computer Science, University Of Technology, Baghdad, Iraq

ahmed_7425@yahoo.com
2
 Department of Computer Science, University Of Technology, Baghdad, Iraq

ayad_cs@yahoo.com

ABSTRACT

WSD is a task with a long history in computational linguistics. It is open problem in NLP. This

research focuses on increasing the accuracy of Lesk algorithm with assistant of annotated

corpus using Narodowy Korpus Jezyka Polskiego (NKJP “Polish National Corpus”). The

NKJP_WSI (NKJP Word Sense Inventory) is used as senses inventory. A Lesk algorithm is

firstly implemented on the whole corpus (training and test) and then getting the results. This is

done with assistance of special dictionary that contains all possible senses for each ambiguous

word. In this implementation, the similarity equation is applied to information retrieval using tf-

idf with small modification in order to achieve the requirements. Experimental results show that

the accuracy of 82.016% and 84.063% without and with deleting stop words respectively.

Moreover, this paper practically solves the challenge of an execution time. Therefore, we

proposed special structure for building another dictionary from the corpus in order to reduce

time complicity of the training process. The new dictionary contains all the possible words (only

these which help us in solving WSD) with their tf-idf from the existing dictionary with assistant

of annotated corpus. Furthermore, eexperimental results show that the two tests are identical.

The execution time - of the second test dropped down to 20 times compared to first test with

same accuracy

KEYWORDS

Corpus-based WSD, Lesk algorithm, dictionary and corpus based WSD.

1. INTRODUCTION

A word sense disambiguation is the task of determining the suitable sense for the ambiguous

words in the context. It has a long history in computational linguistics, and is a non-trivial task

result from the nature of language semantics. All the current used algorithms did not achieved

high levels of accuracy. Many of these algorithms depend on contextual similarity for selecting

the proper sense [1].

The revolution of the work on WSD may be start in 1980’s where the digital large-scale lexical

resources became widely available [2].

Tasks of many NLP improved using WSD because word sense ambiguities results in many

problems in many applications such as, information retrieval, machine translation, question

90 Computer Science & Information Technology (CS & IT)

answering, information retrieval, and text classification therefore; WSD is an important task.

WSD algorithm is varying from one application to another [1]. In this paper, we ignored the

applications and focuses on the implementation and evaluation of WSD systems as a stand-alone

task.

Most of the used WSD algorithms are dictionary-based or corpus-based methods. Dictionary-

based methods choose the sense whose gloss or definition shares the most words with the target

word’s neighborhood [1]. Lesk algorithm is an example of dictionary based methods. It is the

most well-studied algorithm for sense disambiguation.

Corpus-based methods require an annotated data where each ambiguous word has the correct

sense in each sentence. This annotation is done by intervention of human. Most of these methods

are called “supervised” because they learn from previously sense annotated data [3]. Lesk

Algorithm gives better results if it used with annotated corpus than without.

2. RELATED WORK

Our approach, as we will see, is improving the WSD dictionary using annotated corpus. The tests

are made by using Lesk algorithm. There are many researches in WSD field. Most of them used

dictionary based, corpus based and hybrid methods.

Montoyo et al. [4] presented two WSD methods based on two main methodological approaches: a

knowledge-based method and a corpus-based method. Their approach combines various sources

of knowledge, through combinations of the two WSD approaches as mentioned above. They

showed how to combine these methods and sources of information in order to achieve good

results in the disambiguation. Little combinations are based while some of them are voting.

Ledo-Mezquita et al. [5] proposed a method of word sense disambiguation based on the

combination of the original Lesk method and the simplified one with additional application of

large lexical resources, like synonym dictionaries, ontologies, etc. their experimental results

show that the method has better precision than the baseline Lesk-based methods. In other side,

Basile et al. [6] adopted the simplified Lesk algorithm to disambiguate adjectives and adverbs,

combining it with other two methods for nouns and verbs.

Ponzetto and Navigli [7] try to maximize the chances of overlap between glosses or between the

gloss and the context in Lesk algorithm by extended WordNet with Wikipedia pages.

Viveros-Jiménez et al. [8] proposed simple strategies for the context window selection that

improve the performance of the Simple Lesk algorithm by: (1) constructing the window only with

words that have an overlap with some senses of the target word, (2) excluding the target word

itself from matching, and (3) avoiding repetitions in the context window.

Schwab et al. [9] proposed GETALP: an unsupervised WSD algorithm inspired by Lesk. A local

similarity are computed using the classical Lesk measure (overlap between glosses), and then

these local similarity is propagated to the whole text (global similarity) using an algorithm

inspired by the Ant Colony. This approach was applied to English and Italian.

Basile et al. [10] described an algorithm which extends two well-known variations of the Lesk

WSD method. The main contribution of them approach relies on the use of a word similarity

function defined on a distributional semantic space to compute the gloss-context overlap. They

used private dataset (BabelNet API 1.1.1) provided by the authors. They used two languages,

Italian and English, in the tests.

Computer Science & Information Technology (CS & IT) 91

3. DICTIONARIES BASED AND THESAURI WSD METHODS

In 1980’s, after the theses of Amsler's (1980) and Michiel’s (1982), Machine-readable

dictionaries (MRDs) became an important source of knowledge. The first attempts were to extract

lexical and semantic knowledge bases from MRDs. Then, it became the basis of lexical semantic

studies [2].

WordNet is an example of improved MRD. It encodes a rich semantic network of concepts

therefore; it can be an important source of word senses in English language [1]]. MRDs rapidly

became a staple of WSD research but they lack pragmatic information that enters into sense

determination [2].

Thesauri provide information about relationships between words, like synonymy, antonymy and,

possibly, further relations. Roget’s International is the most widely used thesaurus in the field of

WSD [11]. The most well-known algorithm deals with MRD for WSD is Lesk algorithm.

3.1. Lesk Algorithm

The Lesk algorithm uses dictionary definitions (gloss/examples) to disambiguate a polysemous

word in a sentence context. The original Lesk algorithm measures overlap between sense

definitions for all words in the text and identify simultaneously the correct senses for all words in

the text. A word is assigned to the sense whose gloss shares the largest number of words in

common with the glosses of the other words [12]. There are many varieties of Lesk algorithm, the

famous are Original and simplified.

We can see the complexity of original Lesk algorithm from the following example: if we have

nine open class words with following number of senses: 26, 11, 4, 8, 5, 4, 10, 8, 3 then the sense

combinations is 43,929,600. It is huge number and hence practically difficult to implement. It is

the main reason for using, other version of Lesk algorithm, simplified Lesk.

3.2. Simplified Lesk Algorithm

The simplified Lesk algorithm is a modified version of Lesk algorithm as shown in figure 1 [13].

It tries to solve each ambiguous word alone without regards for other senses for other words

(words which have sense ambiguity in the same context). For this reason, it can be used in

practice.

Figure 1. simplified Lesk algorithm [1].

function Simplified_Lesk(word, sentence)

 best-sense←most frequent sense for word

 max-overlap←0

 context←set of words in sentence

 for each sense in senses of word do

 signature←set of words in the gloss_examples of sense

 overlap←Compute_overlap(signature, context)

 if overlap > max-overlap then

 max-overlap←overlap

 best-sense←sense

 end
 return(best-sense){ returns best sense of word}

92 Computer Science & Information Technology (CS & IT)

Simplified Lesk algorithm can be used with annotated corpus by:

• Additionally Use sentences in corpus to compute signature of senses.

• Computing weighted overlap by using idf.

4. SIMILARITY AND COMPUTING TF-IDF FROM TRAINING CORPUS

If there are n different words (types; e.g., the most frequent meaningful words in a language)

then, a document j may be represented as:

),...,,,(,,3,2,1 jnjjjj tftftftfd =

→

 (1)

Where tfi, j is the term frequency of the word wi in document j. Similarly, a query q may be

represented as:

),...,,,(,,3,2,1 qnqqq tftftftfq =

→

 (2)

The simplest approaches are based on the bag-of-words (multiset of words) model. In such a

model the similarity between the query and a document is the cosine of appropriate vectors:

∑∑

∑

==

=

→→

→→

→→

×

×

=

×

=
n

i ji

n

i qi

n

i jiqi

j

j
j

tftf

tftf

dq

dq
dqsim

1

2

,1

2

,

1 ,,

||||

.
),((3)

The equation (3) can be used with Lesk Algorithm without annotated corpus.

Because we deal with annotated corpus we need to other factor which is Inverse document

frequency (idf). Inverse document frequency idf assigns more weight to words which are more

specific for the given document. For a word wi:

i

i
n

N
idf log= (4)

Where N is the number of documents in the collection and ni is the number of documents

containing the word wi.

A frequently used measure of the weight of word wi in document j is tf.idf (tf-idf, TFIDF)
1
. Then,

the similarity can be computed as [1]:

∑∑

∑

==

∈
→→

×

=
m

i

iji

n

i

iqi

dqw

wjwqw

j

idftfidftf

idftftf

dqsim

1

2

,

1

2

,

,

2

,,

)()(

)(

),((5)

Where

1
 There are numerous variants of tf.idf.

Computer Science & Information Technology (CS & IT) 93

• tfw,q is term frequency of the word w in query q but tfi,q is term frequency of word

wi in the query.

• tfw,j term frequency of the word w in document dj.

• idfw is inverse document frequency of the word w in document j.

• n and m are number of the different words in query and document j respectively.

The above equation can be used to calculate the best word sense as following: Suppose a

dictionary contains orthogonal entries2. Each entry has more than one senses and each sense has

some gloss examples. The simple way, for selecting the best sense, is by checking the similarity

between each example and the query. The ambiguous entry will take the sense where its example

gives high similarity.

4.1. Using invers sense frequency (isf):

isf (inverse sense frequency) is equivalent to idf with little differences. We deals with all

examples of one sense as one block (like one document), lets call it sj. Then for each word in the

examples, isf is calculated by3:

i

i
n

S
isf log= (6)

Where:

• S: is the number of senses for the orthogonal entry.

• ni: is the number of senses where word wi appear in them examples.

The similarity between query and sj, for the current ambiguous entry, is:

∑∑

∑

==

∈
→→

×

=
m

i

iji

n

i

iqi

dqw

wjwqw

j

isftfisftf

isftftf

sqsim

1

2

,

1

2

,

,

2

,,

)()(

)(

),((7)

• tfw,q, tfi,q: are same as in equation 5.

• tfw,j: term frequency of the word w in the examples of sense j.

• tfi,j: is a term frequency of word i in the examples of sense j for current entry.

• isfw: is inverse sense frequency of the word w.

• n and m are number of the different words in query and the examples of sense j

respectively.

Using annotated corpus with the dictionary is very simple task with equation 7. Simply, we add

all the sentences have specific entry of specific sense to the examples of this entry sense. For

more details see the algorithm in figure 2.

2 Orthogonal entry is the dictionary word has more than one sense. We used this term for differentiate it

from the other words.
3
 P. Basile, etl. (2014) used IGF (Inverse Gloss Frequency)

94 Computer Science & Information Technology (CS & IT)

5. IMPLEMENTATION OF LESK WITH ANNOTATED CORPUS AND

RESULTS

The National Corpus of Polish project (Pol. Narodowy Korpus Jezyka Polskiego; NKJP) [14] was

used as a dataset. The used senses inventory is NKJP_WSI (NKJP Word Sense Inventory). The

whole corpus was taken with little exceptions
4
. This means, 844 annotated files were processed.

The simplified Lesk algorithm is implemented on this corpus. The results, shown in table-1, were

obtained by using training and testing 10 fold5 of 844 files. The execution time for this

experiment was very long time. In this implementation, we depended on the fact that the context

was parsed previously and we got from this stage the ambiguous words and all their bases. Then,

same test was used with deleting stop words. The results of this test are shown in table 2.

Table1. Applying simplified Lesk algorithm on NKJP corpus with deleting stop words.

Table2. Applying simplified Lesk algorithm on NKJP corpus with deleting stop words.

4 Very little files have bags in its structure therefore we took 844 files.
5
 We did not use 10-Fold Cross-Validation. Simply we segmented the corpus to 10 parts (fold), One part as

test and the other 9 parts as training.

fold
#Files

matched senses Total senses
Accuracy

%
test training

1 84 760 1428 1792 79.687

2 84 760 505 628 80.414

3 84 760 723 850 85.059

4 84 760 661 775 85.29

5 84 760 176 203 86.699

6 84 760 333 409 81.418

7 84 760 796 954 83.438

8 84 760 1183 1449 81.642

9 84 760 1015 1206 84.162

10 88 760 992 1259 78.793

Total 844 7812 9525 82.016

fold
Files

matched senses Total senses
Accuracy

%
test training

1 84 760 1480 1792 82.589

2 84 760 533 628 84.872

3 84 760 720 850 84.705

4 84 760 668 775 86.193

5 84 760 179 203 88.177

6 84 760 356 409 87.041

7 84 760 816 954 85.534

8 84 760 1210 1449 83.505

9 84 760 1032 1206 85.572

10 88 760 1013 1259 80.460

Total 844 8007 9525 84.063

Computer Science & Information Technology (CS & IT) 95

6. CONSTRUCTION NEW DICTIONARY FROM THE CORPUS

Clearly, that using of annotated corpus with Lesk algorithm will increase the accuracy. But,

practically, training need very long time for evaluating the terms. Certainly, it is used for first

time but the performance can be improved by using a new dictionary from old dictionary which

have all words (assist in deciding for solving WSD problem) for all senses. The word's tf and isf

are recorded in the new dictionary with the word itself. Any word have zero isf will not be

recorded. The algorithm for construction the dictionary is shown in figure 2. It will construct new

dictionary automatically (we don't have query here).

By applying the algorithm, each word recorded in more than one sense will have the same isf and

this is logically because isf=log(S/ni). As mentioned below, this is very useful in practice.

tf for each word were recorded without using query and, logically, it will not affect the results

when we will test this dictionary.

Figure 2: Construction Dictionary from existing dictionary with assistant of annotated corpus

7. TESTING THE MODIFIED DICTIONARY

In practice we have query, sentence which have the ambiguous word w, but we don't have isf for

each word in this sentence. This done easily by looking to the word if it is exist in any sense it

will take the isf of the same word in the sense otherwise it's isf=0 (this because each word which

recorded in more than one sense, it have same isf).

Computing tf for w in the query are done by comparing all the words in query with the set of all

words in query without regards to the set of the words in document.

We used the same data set in section 5 for testing the new dictionary. The same two conditions,

with/without taking stop words in computation, were taken.

We got on the results identical to the results in table 1 & 2. The important gain here is the time of

execution where the time of execution drop down by 20 times comparing with the first tests.

Algorithm for construction dictionary

1- start from(initialize the) existing dictionary "NKJP_WSI.xml"

2- Take one entry (ambiguous word w) from Dictionary

3- Get the senses and all words of the examples for each sense. Now,

each sense has words list.

4- for the entry w: (i)search for this entry in the corpus (ii) all words of

the sentence in which this entry appear are recorded in the sense

words list of the matched sense.

5- For this entry of dictionary now we have list of senses where each

sense have a list of words taken from the dictionary examples and

the corpus. Compute tf and isf for each word where the 'documents'

is the senses.

6- Delete each word have isf=0.

7- Record the words which are not deleted in new dictionary with its tf

and isf.

8- Repeat 2-7 for all entries in the dictionary

96 Computer Science & Information Technology (CS & IT)

8. ANALYZING THE RESULTS AND CONCLUSION

This paper presents that how to apply Lesk algorithm using dictionary with assistant of annotated

corpus. Moreover, it presents how the similarity equation of IR is modified in order to apply it on

WSD. Then, the performance (especially the time of execution) was improved by constructing a

new dictionary from the annotated corpus and the used dictionary. The last modification is for

practical use.

Firstly, all words in annotated corpus which related to the specific sense were obtained. Then, the

set of all words for this sense and the other senses in same orthogonal entry where obtained which

leads to words randomly ordered (or by frequency distribution). Finally, each word and its tf and

isf are also obtained. This means statistical information about words is generated which shared in

all senses for specific orthogonal entry.

We induced that, from practical test, there are a key words (limited words) which can be used to

solve the WSD. The other words were used as assistant or weren't used in decision. As example,

most of preposition weren't used for making the decision i.e. they can be taken as stop words

(deleted). As mentioned, deleting the stop words increased the average accuracy on the tests.

the other thing was induced from this work, using dictionary alone for solving WSD problem not

sufficient because some words depends on previous words not in the same sentence but may be

in the previous sentences.

Anyone who has simple information about polish language, he/she knows that the base words in

polish take much morphosyntatic forms. This will lead to collections of many words for the same

base. From this point of view, this paper suggests writing dictionary depends on the bases.

Furthermore, this work must be done carefully because it (maybe) will cause drop the accuracy. It

need to more works and experiments for deciding if it can be used.

Because there are key words helped the algorithm in making decisions in WSD, searching about

these words is important task. This work is purely related to linguistics scientists.

REFERENCES

[1] D. Jurafsky & J. Martin 2008 "Speech and Language Processing: An introduction to natural language

processing, computational linguistics, and speech recognition" PEARSON prentice Hall Upper Saddle

River, New Jersey, USA.

[2] N. Ide and J. Véronis (1998). "Word Sense Disambiguation: The State of the Art" Computational

Linguistics, Vol. 24 Issue 1, pp 2-40.

[3] H. Ng (1997) “Exemplar-Base Word Sense Disambiguation: Some Recent Improvements”. In Proceedings

of the 2nd Conference on Empirical Methods in Natural Language Processing, EMNLP.

[4] A. Montoyo, A. Suarez, G. Rigau and M. Palomar (2005): “Combining Knowledge- and Corpus-based

Word-Sense-Disambiguation Methods”. Journal of Artificial Intelligence Research Vol. 23, PP 299-330.

[5] Y. Ledo-Mezquita, G. Sidorov and V. Cubells, (2006) "Combined Lesk-based Method for Words Senses

Disambiguation," In Proceedings of the 15 th International Conference on Computing, Washington: IEEE

Computer Society.

[6] P. Basile, M. de Gemmis, A Gentile, P. Lops, and G. Semeraro. 2007. “UNIBA:JIGSAW algorithm for

Word Sense Disambiguation”. In Proceedings of the Fourth International Workshop on Semantic

Evaluations (SemEval-2007), Prague, Czech Republic.

[7] S. Ponzetto and R. Navigli. 2010. “Knowledge-rich Word Sense Disambiguation Rivaling Supervised

Systems”. In Proceedings of the 48th Annual Meeting of the Association for Computational

linguistics,ACL ’10, Stroudsburg, PA, USA.

[8] F. Viveros-Jiménez, A. Gelbukh and G. Sidorov (2013) “Simple Window Selection Strategies for the

Simplified Lesk Algorithm for Word Sense Disambiguation”.. Proceeding of 12th Mexican International

Conference on Artificial Intelligence, MICAI 2013, Mexico City, Mexico.

Computer Science & Information Technology (CS & IT) 97

[9] D. Schwab, A. Tchechmedjiev, J. Goulian, M. Nasiruddin, G. Serasset, and H. Blanchon 2013. “GETALP

System : Propagation of a Lesk Measure through an Ant Colony Algorithm”. Proceedings of the Seventh

International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA.

[10] P. Basile, A. Caputo and G. Semeraro (2014) “An Enhanced Lesk Word Sense Disambiguation Algorithm

through a Distributional Semantic Model”. Proceedings of COLING 2014, the 25th International

Conference on Computational Linguistics. Dublin, Ireland.

[11] R. Nvigli (2009) "Word Sense Disambiguation: A Survey" ACM Computing. Survey. Vol. 41, No.2, pp 1-

69.

[12] S. Torres and A. Gelbukh (2009). "Comparing Similarity Measures for Original WSD Lesk Algorithm"

Research in Computing Science 43, pp. 155-166

[13] A. Kilgarriff and J. Rosenzweig (2000). "Framework and results for English SENSEVAL." Computers and

the Humanities, Vol. 34, pp 15- 48.

[14] A. Przepiórkowskiego, M Bańko, R. Górskiego B.Tomaszczyk (2012) “Narodowy Korpus Jenzka

Polskiego” Wydawnictwo Naukowe PWN SA, Warsaw, Poland.

AUTHORS

Dr. Ahmed H. Aliwy is a lecturer in Computer Science Department in University of

Technology, Baghdad, Iraq. His current research interests include Arabic Natural Language

Processing ANLP, Machine Learning and Natural Language Processing. He has got his PhD

from Warsaw University, Poland.

Dr. Ayad R. Abbas is a lecturer in Computer Science Department in University of

Technology, Baghdad, Iraq. His current research interests include AI, Machine Learning

and some applications of Natural Language Processing. He has got his PhD from

University of Wuhan, China.

