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ABSTRACT 

 
Text mining and Text classification are the two prominent and challenging tasks in the field of 

Machine learning. Text mining refers to the process of deriving high quality and relevant 

information from text, while Text classification deals with the categorization of text documents 

into different classes. The real challenge in these areas is to address the problems like handling 

large text corpora, similarity of words in text documents, and association of text documents with 

a subset of class categories. The feature extraction and classification of such text documents 

require an efficient machine learning algorithm which performs automatic text classification. 

This paper describes the classification of product review documents as a multi-label 

classification scenario and addresses the problem using Structured Support Vector Machine. 

The work also explains the flexibility and performance of the proposed approach for efficient 

text classification. 
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1. INTRODUCTION 

 
With the rapid growth of technology and its applications, text data has become one of the 

important information sources in real world scenarios. In such a scenario, text classification plays 

an important role in organizing the text documents into different categories. Considering the 

convenience and relevance of text classification, the dataset used in this work encompasses a 

large collection of product reviews of electronic gadgets. This paper presents the construction of a 

classification model in multi-label domain for the classification of product review documents. As 

the first phase of this work, text mining is carried out inorder to model and structure the 

information content of textual sources. The result of text mining process generates text documents 

with relevant and high quality information which indeed contributes to efficient text 

classification. The work deals with the general problem of text classification, but using a new 

approach of Multiclass-Multilabel classification using Structured Support Vector Machine. 

 

The Structured SVM is a supervised learning algorithm designed for complex outputs and 

structured output spaces and it performs the learning by using discriminant function over input-
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output pairs. The learning phase of the specified method involves the feature extraction and 

grouping of features into multiple classes and hence multiple labels. Here the text classification is 

a multi-labeled problem, where each document can belong to more than one class. We propose a 

multi-label text classification model that maps a set of categories to each input document and so 

the output of the classifier will be a vector rather than a single class label. The resultant model 

thus performs multi-label text classification of product review documents and it also focuses on 

the precision, accuracy and performance of the system by the creation of a confusion matrix 

which measures the degree of prediction and classification of text documents. 

 

2. METHODOLOGY 

 
The proposed work describes Structured Support Vector Machine as a Multi-label text classifier 

for the classification of product review documents. The entire system is organized into four major 

modules namely, Preprocessing, Learning, Classification and Evaluation. The preprocessing stage 

involves the techniques and processes which completes task of text mining. The structured SVM 

is formulated by the training and testing modules which indeed represents the learning and 

classification tasks. Finally the evaluation phase measures the efficiency and performance of the 

system. The workflow of the proposed system is represented as follows. 

 

 
 

Figure 1.  Proposed System   

 

2.1. Corpus  

 
The experiment of this work is carried out on a text corpus which is a collection of product 

reviews of various electronic gadgets. The electronic gadgets include Mobile Phones, Tablets, 

Laptops, Pendrives, Televisions, Datacards, Memory cards, Printers, Speakers, Washing 

Machines, Air conditioners, Vacuum Cleaners, Fans, Microwave Ovens etc. The corpus is 
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organized as a multi-label dataset with 105 features, 25 classes, 1500 review documents for 

training, and 500 review documents for testing. 

2.2. Pre-processing 
 

2.2.1. Tokenization 

 
Tokenization is the first pre-processing stride of any natural language processing and corpus 

generation. It is the process of replacing the meaningful sentence in to individual words with 

space as the delimiter and it retain all the valuable information’s. Each individual words are 

known as tokens. These tokens are the key elements of the NLP. 

 

In our experiment, tokenization is one of the pre-processing steps of our corpus generation. One 

lakhs corpus was considered in our work. The tokenization methodology is used to split the 

corpus sentence into words. The python script are using for corpus tokenization. In our corpus, 

the tokenization help us to knowing the total frequency of words in corpus.  

 

2.2.2. Stop word removing 

 
Stop word removing is one of the pre-processing stage of natural language processing. It is the 

method of removing the common stop words in English like ‘is’, ’was’, ’where’, ’the’, ‘a’, ‘for’, 

‘of’, ‘in’ exe. The stop words in corpus make little difficult for coups processing and feature 

extraction. To avoid this issues we are choose stop word remover. 

 

In our experiment, the python stop word scrip and NLTK toolkit are used for stop word removing 

processing. The stop word remover help to remove the extra common words from the corpus and 

help to reduce the size of the corpus and it will help us easy to identify the key words in the 

corpus and frequency distribution of concept words in overall concepts. 

 

2.2.3. Lemmatization 

 
Lemmatization is the process of obtaining the “lemma” of a root word with involves reducing the 

word forms to its root form after understanding the parts of speech and the context of the word in 

the sentence [1]. In our methodology the lemmatization is one of the NLP procedure for getting 

the root words from the huge corpus. It will help us to label the most frequent word in that corpus.  

 

Here the lemmatization works the following way. First to establish a link between the corpuses an 

English dictionary. The English dictionary contains all form of words and also had the all 

inflected form of verbs. Based on the dictionary the lemmatization process are takes place. This 

process is to replace inflected and past form of the word with corresponding bass or root words. 

After the lemmatization process we got the root words and these root words are used to 

processing the labelling process in the support vector machine algorithm. 

 

2.3. Training 

 
2.3.1. Feature Extraction 

 
The text feature extraction of this work is performed by using Term Frequency – Inverse 

Document Frequency approach and similarity matching of words. The general problem of text 

feature extraction can be done by tf-idf method, but there are situations in which the term 

frequency criteria fail to do so. For example, we may have a review document which doesn’t find 

the frequency of a particular term and thus couldn’t map to a feature explicitly.  In such cases, the 
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similarity of words and their synonyms are to be considered and grouping of such words is done 

to extract the features. The following section describes these methods in detail. 

 

Term Frequency – Inverse Document Frequency (tf-idf) is a popular feature extraction method 

which reflects the relevance of a word in a particular document among the corpus. It is a numeric 

statistical approach which is often considered as a weighing factor in Information Retrieval and 

Text Mining and its value is directly proportional to the number of times a word appears in a 

particular document. Denote a term by ‘t’, a document by ‘d’ and a corpus by ‘D’, the Term 

Frequency TF (t, d) is defined as the number of times the term ‘t’ appears in document ‘d’ while 

Document Frequency DF(t, D) is defined as the number of documents that contains the term ‘t’. 

However, some frequent terms may not provide any relevance for the task of feature extraction 

and the weight of such terms should be diminished. For this, the ‘Inverse Document Frequency’ 

approach is used to distinguish relevant and non-relevant keywords which results in minimization 

of weight of frequently occurring non-relevant terms and maximisation of weight for terms that 

occur rarely. The idf gives the measure of specificity of a term which can be expressed as the 

inverse function of the number of documents in which the term occurs. 
 

The tf-idf based feature extraction is performed by modelling the documents in vector space. The 

first step in modelling is the creation of an index vocabulary (dictionary) of terms present in the 

training documents. Now the term frequency gives the measure of how many times the words in 

the dictionary are present in the testing documents.  Mathematically, tf and idf are calculated as 

follows: 

 

 
 

Where f(t, d) denotes the raw frequency of the term, ‘t’ and f(w, d) represents the raw frequency 

of any term in the document. 

 

 
 

where N denotes the total number of documents in the corpus and the denominator denotes the 

occurrence of term t in document d. 

 

Similarity matching and grouping of words is performed inorder to extract features from review 

documents which does not explicitly specify the features. For this, we formulate a perceptual 

grouping of similar words that falls under a single class. Inorder to map a group of such words to 

a particular feature, it is essential to find out the hyponyms and hypernyms for each relevant word 

in the document. This work uses the WordNet Interface of NLTK Python for generating the 

hyponyms and hypernyms of words in each document. An illustration of the grouping of features 

is given below: 
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Figure 2.  Grouping of Features  

 
2.3.2. Learning and Classification 

 

The paper presents the classification of words in product reviews to different class labels based on 

the various features of the product. Since the corpus is associated with text reviews, a grouping 

approach of feature extraction is done in this work, which results in the formulation of multiple 

classes and multiple class labels. Hence the classification problem is represented as a multi-class 

multi-label problem and this work proposes a new approach called ‘Structured Support Vector 

Machines’ for learning and classification. The problem addresses the issues of complex outputs 

including multiple dependent output variables and structured output spaces. The proposed method 

is to perform Multi label classification using Structured SVM. The method approaches the 

problem by generalizing large margin methods to the broader problem of learning structured 

responses. This approach specifies discriminant functions that exploit the structure and 

dependencies within structured output spaces. The maximum margin algorithm proposed in 

Structured SVM has the advantages in terms of accuracy and tenability to specific loss functions.  

 
2.3.3. Structured Support Vector Machines 

 
Structured SVM is a Support Vector Machine (SVM) learning algorithm for predicting 

multivariate or structured outputs. It performs supervised learning by approximating a mapping h: 

X�Y using labelled training samples (x1,y1),….(xn,yn). Unlike the regular SVMs which 

consider only univariate predictions like in classification and regression, SSVM can predict 

complex objects like trees, sequences or sets. Examples of problems with complex outputs are 
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natural language parsing, sequence alignment in protein homology detection and Markov models 

for Parts Of Speech (POS) tagging. The algorithm can also be used for linear-time training of 

binary and multi-class SVMs under linear kernel. The algorithm uses quadratic programming and 

is several orders of magnitude faster than prior methods. SVMstruct is an instantiation of the 

Structured Support Vector Machine algorithm and it can be thought as an API for implementing 

different kinds of complex prediction algorithms. In this work, Python interface to SVMstruct is 

used for implementing the multi-label classification. 

 
In the SSVM model, the initial learning model parameters are set and the pattern-label pairs are 

read with specific functions. The user defined special constraints are then initialised and then the 

learning model is initialised. After that, a cache of combined feature vectors is created and then 

the learning process begins. The learning process repeatedly iterates over all the examples. For 

each example, the label associated with most violated constraint for the pattern is found. Then, the 

feature vector describing the relationship between the pattern and the label is computed and the 

loss is also computed with loss function. The program determines from feature vector and loss 

whether the constraint is violated enough to add it to the model. The program moves on to the 

next example. At various times (which depend on options set) the program retrains whereupon the 

iteration results are displayed. In the event that no constraints were added in iteration, the 

algorithm either lowers its tolerance or, if minimum tolerance has been reached, ends the learning 

process. Once learning has finished, statistics related to learning may be printed out and the 

model is written to a file and the program exits. 

 

After the learning process, a model is created and written to a file for classification. For the 

testing phase, the learned model is read with and the testing pattern-label example pairs are 

loaded with. Then, it iterates over all the testing examples, classifies each example, writes the 

label to a file, finding the loss of this example, and then may evaluate the prediction and 

accumulate statistics. Once each example is processed, the classification summary statistics are 

printed out with and the program exits. The learning and classification module of struct SVM 

model is represented as follows: 

 

Structured output SVMs extends SVMs to handle arbitrary output spaces, particularly ones with 

non-trivial structure (E.g. textual translations, sentences in a grammar, etc.). Learning a 

structured SVM requires solving an optimisation problem by choosing the highest scoring output 

for each input 

 

                                          
 
The evaluation of a structured SVM requires solving the following problem and the efficiency of 

using structured SVM (after learning) depends on how quickly the inference problem is solved. 

 

                                           
 
Then we define a loss function ∆(y, y^) measuring how well the prediction y^ matches the truth 

label y. Finally we define a constraint generation function which captures the structure of the 

problem.  Generating a constraint for an input-output pair (X, y) means identifying what is the 

most incorrect output that the current model still deems to be compatible with the input. The 

margin rescaling formulation and slack rescaling formulation are represented as follows:  
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And 

 

Where w is the parameter vector to be learned, Ѱ(x, y) € R2 is the joint feature map and F(x,y; w) 

is an auxiliary function. 

 

The SVMstruct implements the 1-slack cutting plane algorithm which is an equivalent formulation 

of the Structural SVM quadratic program and is several orders of magnitude faster than prior 

methods. 

 
2.3.4. Pseudo code  

 
2.3.4.1. SVM_Python_Learn () 

 
1. Check out all the command line arguments. 

2. Load the Python Module 

3. Parse_Parameters 

Sets the attributes of sparm based on command line arguments. 

4. Read_Examples 

Reads and returns x, y example pairs from a file. 

5. Initialize_model 

Initializes the learning model 

6. Construct cache of Ѱ(x, y) vectors used in training. 

7. Train model and iterate over all training examples until no constraints are added. 

8. Return a feature vector describing the input pattern x and correct label y. 

• If Margin scaling, find the most violated constraint and then classify example. 

Return y’ associated with x’s most violated constraint.   

• If Slack scaling, find the most violated constraint slack and then classify 

example. Return y’ associated with x’s most violated constraint.  

• Return a feature vector describing pattern x and most violated label y’. 

• Return the loss of y’ relative to the true labelling y. 

• If the new constraint significantly violates the existing Quadratic Programming, 

add it to the SVM QP. 

• Print_Iteration_Stats 

• Print the statistics once learning has finished. 

9. Train model, and iterate over all training samples until no constraints are added. 

10. Print_Learning_Stats 

Print statistics once learning has finished. 

11. Write_Model 

Dump the struct model to a file. 

12. Exit 

 
2.3.4.2. SVM_Python_Classify () 
 

1. Check out all the command line arguments. 

2. Load the Python Module 
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3. Parse_Parameters_Classify 

Process the custom command line arguments 

4. Read_Model 

Load the struct model from a file 

5. Read_Examples 

Reads and returns x, y example pairs from a file. 

• Classify_example 

o  Given a pattern x, return the predicted label 

• Write_label 

o Write a predicted label to an open file. 

o Return the loss of y’ relative to the true labelling y 

• Eval_Prediction 

o Accumulate statistics about a single training example. 

6. Iterate over all examples 

7. Print_testing Stats 

8. Print statistics once classification has finished.  

9. Exit 

 

3. CONCLUSION AND PERFORMANCE EVALUATION 
 
In the experiment phase of this work, 500 testing samples are selected for testing and performance 

evaluation. The confusion matrix provides an idea about the actual and predicted classifications 

done by the classification system. It is also created for identifying the miss classifications and 

missed classifications. The confusion matrix generated after the testing process is as follows: 
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Figure 3.  Confusion Matrix  

 
The following is the list of measures that are often computed from the above confusion matrix:  

 
Table 1.  Confusion Matrix measurements  

 

Measures Values 

Accuracy 80.4 % 

Misclassification Rate (Error Rate) 19.6 % 

True Positive Rate (Recall) 88 % 

False Positive Rate 64 % 

Specificity 35 % 

Precision 88 % 

Prevalence 84 % 

 
n= number of population  

True positive (TP) 

True negative (TN) 

False positive (FP) 

False negative (FN) 

 
The below table values are representing the accuracy of the proposed structured supporting vector 

machine learning algorithm for text mining and classification of the product reviews. 
    

Table 2. Accuracy table  

 

Accuracy = (TP+TN)/total False Positive Rate: FP/actual no  

 

Misclassification Rate= (FP+FN)/total   [Also 

known as "Error Rate"] 

Specificity: TN/actual no  

 

True Positive Rate: TP/actual yes   

[Also known as "Recall"] 

Precision: TP/predicted yes 

Prevalence:  actual yes/total 
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4. CONCLUSION 

 
We formulated a Structured Support Vector Machine learning paradigm for the classification of 

texts from various product reviews. The problem is represented as a multi-class multi-label 

problem and addressed by Struct SVM Python Implementation. The system results in an overall 

accuracy of 80.4% with enough flexibility and ability to handle specific loss functions. The 

remarkable characteristic feature of this algorithm is its capability for training complex models. 

The final outcome of this work is the classified words in the review text into multiple class labels 

according to the extracted features. The accuracy and performance of the system is measured and 

found to be an optimized method in the case of a Multi-label text classification scenario. 
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