

Dhinaharan Nagamalai et al. (Eds) : ICCSEA, SPPR, UBIC - 2016

pp. 01–13, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.61101

EVALUATION AND STUDY OF SOFTWARE

DEGRADATION IN THE EVOLUTION OF

SIX VERSIONS OF STABLE AND MATURED

OPEN SOURCE SOFTWARE FRAMEWORK

Sayyed Garba Maisikeli

College of Computer and Information Sciences

Al-Imam Muhammad Ibn Saud Islamic University

Riyadh, Kingdom of Saudi Arabia
maisikel@ccis.imamu.edu.sa

ABSTRACT

When a software system evolves, new requirements may be added, existing functionalities

modified, or some structural change introduced. During such evolution, disorder may be

introduced, complexity increased or unintended consequences introduced, producing ripple-

effect across the system. JHotDraw (JHD), a well-tested and widely used open source Java-

based graphics framework developed with the best software engineering practice was selected

as a test suite. Six versions were profiled and data collected dynamically, from which two

metrics were derived namely entropy and software maturity index. These metrics were used to

investigate degradation as the software transitions from one version to another. This study

observed that entropy tends to decrease as the software evolves. It was also found that a

software product attains its lowest decrease in entropy at the turning point where its highest

maturity index is attained, implying a possible correlation between the point of lowest decrease

in entropy and software maturity index.

KEYWORDS

Software Evolution, Software maintainability and degradation, Change ripple-effect, Change

Impact, Change Propagation

1. INTRODUCTION

After a software system is developed, there is a high possibility that it may undergo some

evolution due to change in business dynamics, response to environmental change, bug fix

exercise, improving design, preventive maintenance or intentional modifications for overall

improvement of the performance of the software system. A small change in an object-oriented

software system however, may produce major local and nonlocal ripple effects across the

software system. The goal of software evolution is to explore and study ripple-effects and

cumulative effects of changes over time; observing whether quality, stability and extendability of

2 Computer Science & Information Technology (CS & IT)

the software are affected as the software system evolves from one version to another. Considering

the size and complexity of the modern software systems, tracking and discovering parts of the

software impacted, risks associated with change, and consequences of a change cannot be

overemphasized.

When used properly, change impact assessment can help in managing and assessing software

maintenance risks, thereby providing guidelines for effective software evolution implementation.

This project investigated six versions of JHotDraw, a widely used open-source Java graphics

framework as a test suite. The novel idea about this project is that while similar research efforts

used static data collection methods, this project applied dynamic data collection methods on the

test suite software under study.

According to [1], software maintenance includes corrective, adaptive and perfective maintenance

enhancements which are technically not a part of software maintenance but, being a post-release

activity.

Identifying potential consequences of a change or estimating what needs to be modified to

accomplish a change may be a daunting task. According to [2] when a software system undergoes

modifications, enhancements and continuous change, the complexity of software system

eventually increases, with a possibility that some level of disorder may be introduced, making the

software system becoming disorganized as it grows, thereby losing its original design structure.

Considering the size and complexity of the modern software systems, tracking the effect of the

change, understanding change impact and what parts of the software are affected and possible

risks associated with a proposed change and potential consequences (side-effects) of a change

cannot be overemphasized. When used properly and effectively, software change impact

assessment can proactively provide a means of managing software maintenance risks and help

guide the implementation of the software change.

On the issue of measuring software degradation, [3 and 4] suggest the use of entropy as an

effective measure, and opined that software declines in quality, maintainability, and

understandability as it goes through its lifetime. This paper sets out to study six consecutive

versions of JHotDraw, a matured and well-structured open source graphics software framework

that has been widely used in many research projects as test subject software. Each of the test

versions was subjected to dynamic profiling and tracing routine that collected data from which

Shannon entropy and software maturity index were derived.

The goal was to observe the entropy level change, and whether there is any correlation between

entropy and software maturity index as the software system evolves from one version to another.

2. RELEVANCE

According to [5], the two most common meanings of software maintenance include defect repairs

and enhancements or adding new features to existing software applications. Another view

expressed by [5] also opined that the word “maintenance” is surprisingly ambiguous in a software

context and that in normal usage it can span some twenty-one forms of modification to existing

applications.

Computer Science & Information Technology (CS & IT) 3

According to [6], almost 50% of software life cycle cost is attributed to maintenance; and yet,

relatively very little is known about the software maintenance process and the factors that

influence its cost. Considering the cost magnitude associated with maintenance and the ever-

increasing size and sophistication of modern day software systems; it is then clear that software

maintenance cost decisions and associated evolution risks cannot be taken lightly.

3. RELATED STUDIES

In a software evolution research, [7], analyzed change of software complexity and size during

software evolution process, and discussed the characteristics related to the Lehman's Second Law

(Lehman et al., 1997), which deals with complexity in the evolution of large software systems

and suggests the need for reducing complexity that increases, as new features are added to the

system during maintenance activities. Also, [7] opined that addition of features leads to the

change of basic software characteristics (such as complexity/entropy) in the system. Their paper

used this change as a means to determine different stages of evolution of a software system,

proposing a software evolution visualization method called Evolution curve (or E-curve).

Discussing software maintenance consequences, [5] also observed that in every industry,

maintenance tends to require more personnel than those building new products. For the software

industry, the number of personnel required to perform maintenance is unusually large and may

top 75% of all technical software workers. The main reasons for the high maintenance efforts in

the software industry are the intrinsic difficulties of working with aging software, and the

growing impact of mass updates. In an empirical study conducted by [8], thirteen versions of

JHotDraw and 16 versions of Rhino released over the period of ten years were studied, where

Object-Oriented metrics were measured and analyzed. The observed changes and the

applicability of Lehman’s Laws of Software Evolution on Object Oriented software systems were

tested and compared.

In a research paper, [9] presented how graph-based characterization can be used to capture

software system evolution and facilitate development that helps estimate bug severity, prioritize

refactoring efforts, and predict defect-prone releases. Also, [10] presented a set of approaches to

address some problems in high-confidence software evolution. In particular, a history-based

matching approach was presented to identify a set of transformation rules between different APIs

to support framework evolution, and a transformation language to support automatic

transformation.

In another paper, [11] compared software evolution to other kinds of evolutions from science and

social sciences, and examined the forces that shape change, and discussed the changing nature of

software in general as it relates to evolution, and proposed open challenges and future directions

for software evolution research. From software evolution point of view, [12] described how and

when the software evolution laws, and the software evolution field, evolved, and also addressed

the current state of affairs about the validity of the laws, how they are perceived by the research

community and the developments and challenges that are likely to occur in the coming years.

In contrast, this paper focuses on measuring software degradation in the evolution of six versions

of a large-scale open-source software system with a special focus on investigating the

introduction of disorder and observing the software maturity level as the software system evolves

from one version to another.

4 Computer Science & Information Technology (CS & IT)

4. METHODOLOGY

In order to explore and investigate the effect of change and its impact on the amount of disorder

introduced as a software system evolves from one version to another, this study considers six

versions of JHotDraw (JHD) as a test suite. These six versions were produced in a period of

about five years (2006 to 2011), reflecting its natural evolution as new requirements were added,

existing functionalities modified or enhanced, and some were deleted.

4.1 Test Program (JHotDraw)

JHotDraw is a very popular, mature and well documented widely used open-source Java-based

graphics framework that has been used extensively in many software engineering research

projects as a test suite. This framework provides a skeleton for developing highly structured

drawing editors and production of document-oriented applications. The framework is known to

be heavily loaded with numerous design patterns, developed based on the solid object-oriented

principles, and based on the best software engineering practices.

To justify using the six different versions of JHotDraw in this research, we referred to some

authors who have used them previously; this includes [7] and [8] where they recommended the

use of JHotDraw as an Aspect Mining validation benchmark. Also, [13] and [14] used JHotDraw

as a benchmark test suite in their research work. In addition, [8] used JHD as one of the test suites

in his project.

Since JHotDraw is a mature and widely used test software programs, this research project also

adopted it as a test program. It should be noted that, although there are ten documented versions

of JHotDraw, seven versions are considered in this research study because the difference between

earlier versions (7.0.6 and 7.07) is minimal as explained by [7]. To help us understand the

chronological nature of the test program and its various versions, some characteristics details are

presented in table 1 below:

Table I. Characteristics of the six versions of JHotDraw

Versions Release Date Size

(MB)

LOC No.

Classes

NOM No. of

Attributes

Version 7.0.9 6/21/2007 11.2 52,913 487 4,234 1090

Version 7.1 3/8/2008 27.6 53,753 485 2,800 1087

Version 7.2 5/9/2008 22.6 71,675 621 5,486 1479

Version 7.3.1 10/18/2009 22.7 73,361 638 5,627 1516

Version 7.4.1 1/16/2010 22.6 72,933 639 5,582 1455

Version 7.5.1 1/8/2010 23.3 79,275 669 5,845 1599

Version 7.6 6/1/2011 23.5 80,169 672 5,885 1606

Seven different versions of JHotDraw are evaluated and tested (see table 1). Each of the versions

of JHotDraw) were dynamically profiled and traced through the use of AspectJ run-timed weaver.

(AspectJ runtime weaver is discussed in section 4.2). In order to maximize code coverage, forty-

six of the major functionalities of each of the JHD applet versions were exercised as they execute.

The granularity level adopted in targeting the various test program artifacts for data collection in

this project is at the method level, rather than at class level.

Computer Science & Information Technology (CS & IT) 5

One of the reasons for the choice is that methods in Object Oriented programming represent a

modular unit by which programmers attribute well-defined abstraction of ideas and concepts.

[15], defined methods in object-oriented paradigm as self-contained units where distinct tasks are

defined, and where implementation details reside, making software reusability possible.

According to [16], methods are less complex than classes, are easier to compare, and provide

significant coverage and easy distinction, and have a high probability of informal reuse. [17]

Observed that all known dynamic Aspect Mining techniques are structural and behavioral and

work at method granularity level.

Event traces were dynamically collected as the test software versions were executed, with the

AspectJ runtime weaver seamlessly running in the background. The runtime weaver has the

capability to dynamically insert probes at selected points in the target test software (in this case

class methods) at specify points known as (joinpoints), where all method executions were traced

and data collected. In this project, we are interested in the sequence and frequency of calls, rather

than method fan-in and fan-out. Frequency counts for each method calls were tallied, from which

probabilities of method invocation were calculated and assigned.

Note that, since methods with the same name in different classes may be counted as one and the

same, we left the class prefix along with method names to make sure that such methods are

counted distinctly and correctly. Note also that duplicate method calls were left intact in the data

collected, since removing such duplicate calls will distort the frequency counts of the method

invocations.

The assigned probabilities represent the probability that such code units will be invoked as the

system is run. It is from this frequency count that the entropy is calculated as the software

changes from one version to another. The other metric used was software maturity index (SMI);

this was derived from the static data collected from documentations produced by [15].

Explanation on how these two metrics are used are discussed in the next few pages.

4.2 Dynamic Data Collection tool (AspectJ Weaver)

AspectJ runtime weaver allows probes to be inserted at specific points of interest statically or

dynamically when the software source code to be profiled executes. Code that allows observing

tracing or changing the software source code is weaved according to the required action specified

in what is called (pointcut). The weaved/inserted code logs the behaviors of the test software,

track its actions based on the given behavior specified by pointcut; in our case, tracing and

profiling each of the methods in our test software system as they are executed or invoked.

AspectJ runtime weaver can be used to seamlessly and dynamically collect data on the test

software as it executes.

The weaver evaluates the pointcut expressions and determines the (joinpoints) where code from

the aspects is added. This may happen dynamically at runtime or statically at compile time. The

runtime weaver then creates a combined source by weaving the source code of the aspects into

the sources of the program under investigation. The generated program code is then compiled

with the compiler of the component language, which is Java in our case.

6 Computer Science & Information Technology (CS & IT)

Figure 1. Example of how AspectJ Weaver works

4.3 Metrics derived from collected data

To assess, evaluate and study the nature of the test software as it evolves from one version to

another, two software metrics were considered in this research project. Included are the

Shannon's Entropy and Software maturity Index (SMI). These metrics were derived from the

datum collected as the test programs run.

4.3.1 Shannon's Entropy

Within the context of software evolution, entropy can be thought of as the tendency for a

software system that undergoes continuous change eventually become more complex and

disorganized as it grows over time, thereby becoming more difficult and costly to maintain.

One of the metrics derived in this project is Entropy, with this metric; we will be able to find a

way to assess whether the test software versions get degraded as they evolve from one version to

another. According to [4], when investigating and studying the effect of a change in a software

system, Shannon’s equation may be better than complexity averaging. According to [1], in

addition to measuring disorder introduced into software evolution, entropy also provides a

measure of the complexity of the software system. [3], [20] stated that entropy can anecdotally

be defined to mean that software declines in quality, maintainability, and understandability

through its lifetime. For effective measurement and assessment of software degradation, [4]

recommended the use of entropy for the study of software degradation.

Many variations of Shannon’s entropy formula is presented in academic papers, but the

generalized Shannon’s entropy formula is expected as follows :

Where

H = System Complexity Entropy,

Computer Science & Information Technology (CS & IT) 7

pi = Probability that method mi in test software is invoked

i = Integer value 1, 2…j, representing each of the categories considered

Note that the negative sign in the equation is introduced to cancel the negative sign induced by

taking the log of a number less than 1.

As explained earlier in the introduction section, the entropy probability in this project is derived

based on the method invocation frequency counts collected when the different versions of the test

programs are executed and exercised. As an example of how entropy is derived in this project,

consider the example of a software system S with three classes C1, C2, C3. Methods (m11, m21)

are contained in C1, methods (m12, m22, m32) contained in C2, and (m13, m23, m33, m43, m53)

contained in C3. The numbers shown beside class methods are representations of the frequency of

method invocations when the test software was exercised.

Figure 2. Example of method invocation from three different classes in (software S)

Based on the given example of the three classes and the associated method invocations shown in

figure 2 above, we can construct probability required for the calculation of the entropies for all

methods in the software being tested as shown in table 2 below

Table II. Example of calculation of probability of method invocation.

Classes Invoked Methods Invocation Frequency Invocation Probability

C1 m1C1

m2C1

8

12

0.1231

0.1846

C2 m1C2

m2C2

m3C2

10

3

5

0.1538

0.0462

0.0765

C3 m1C3

m2C3

m3C3

m4C3

m5C3

4

3

4

9

7

0.0615

0.0462

0.0615

0.1385

0.1077

 Total 65 0.9696

Figure 3 below shows a graph of chronological change of JHD entropy values from one version

to another. To construct the graphs displayed in figure 3, entropy calculated for a version was

compared to the previous one. As depicted, it should be noted that initially, the entropy remains

8 Computer Science & Information Technology (CS & IT)

stubbornly the same, but at a later stage, the entropy dropped consistently as the test software

versions transition from one version to another.

Figure 3 Entropy graph Version to Version

The graph shown in figure 3a is for the initial version of JHD (version 7.0.1) before any change is

made. The subsequent figures (3b through 3f) are a superimposition of entropy values

representing transitions from one version to another (two versions at a time). From these graphs,

a gradual decrease in entropy values can be observed. The high spikes in the middle of each

graph are indications of changes reused packets and other add-in modules have undergone

throughout the transitional evolution of the test software system.

4.3.2 Software Maturity Index (SMI)

When discussing software maturity, [6] defined Software Maturity Index (SMI) as a metric that

provides an indication of the stability of a software product (based on changes that occur for each

release of the product). The software maturity index is computed in the following manner:

Computer Science & Information Technology (CS & IT) 9

SMI = [MT- (Fa+ Fc+ Fd)]/MT

Where,

MT= number of modules in the current release

Fc= number of modules in the current release that have been changed

Fa= number of modules in the current release that have been added

Fd= number of modules from the preceding release that were deleted in current release

Software maturity index (SMI) is especially used for assessing release readiness when changes,

additions or deletions are made to an existing software system. An observation made by [6]

emphasized that, as SMI approaches 1.0, the product begins to stabilize. SMI may also be used as

metric for planning software maintenance activities. The mean time to produce a release of a

software product can be correlated with SMI, and empirical models for maintenance effort can be

developed. In this project, this metric was derived from the chronology of JHotDraw

Updates/Additions/Deletions documented and presented by [5]. In this project, the calculation of

SMI is based on the package rather than at class or method granularity levels.

Table 3. Data for Software maturity index calculation

From Version to Version No. Of

Package

s

Packages

Added

Packages

Changed

Packages

Deleted

Calculated

(SMI)

JHD-V7.1 to JHS-V7.2 46 8 24 0 0.30

JHD-V7.2 to JHS-V7.3.1 46 0 23 0 0.50

JHD-V7.3.1 to JHS-V7.4.1 44 6 0 2 0.81

JHD-V7.4.1 to JHS-V7.5.1 46 3 6 0 0.80

JHD-V7.5.1 to JHS-V7.6 45 1 7 1 0.80

From archive data obtained from [18] and [19], a summary of all addition, changes, and deletions

made to JHD versions 7.1 through version 7.6 were used to calculate the software maturity index

as shown in table 3 above. Also, from this data, the SMI graph is drawn and displayed in figure 4

below. From this graph, it will be seen that the Maturity Index (MI) increases and then levels off

as the optimal level of 0.8 is reached, starting from the evolution transition point (V7.3.1 to

V7.4.4), stagnating all the way through (V7.6).

Figure 4 Inter-version Maturity Index

10 Computer Science & Information Technology (CS & IT)

To further view the nature of the JHD evolution and the attained maturity pictorially, the SMI is

calculated from the collected transition data for all versions and graphed as shown in figure 5

below.

Figure 5. Entropy Values for all 6 versions of JHD

5. ANALYSIS OF RESULTS

On close observation, it will be noted that all versions started with high entropy values, but as

soon as the software transitions from JHD7.31 to JHD7.4.1, the entropy starts to drop and then

stays consistently at a lower level. If we observe figure 4 above, we can also see that JHD

attained its maturity during the transition from JHD 7.3.1 to V.7.4.1. According to [6], a software

product reaches its maturity when software maturity index approaches 1. From both figure 6 and

7, we can theorize that in well-designed software that is based on best practices such as

JHotDraw, the maturity level is reached at the turning point at which observed entropy starts to

decrease. To allow us to visualize the adjustments JHD went through as it transitions and

matures. The chart shown in figure 6 are constructed from data extracted from table 1.

Figure 6. Blown-up Pie Chart for all the six Versions of JHD

Computer Science & Information Technology (CS & IT) 11

It can be seen from the blown-up pie chart shown in figure 6 above that, when initially

transitioning from (version 7.09 to 7.1 and from version 7.1 to 7.2), the pie parts in this transition

did not align up properly with the outer pie pieces; however, as JHD evolves and transitions

(clockwise), the pie pieces started to form perfect alliance with their respective outer pieces,

indicating that maturity level has been attained, and the SMI remaining constant at 0.8 for

(Version 7.4.1, Version 7.5.1 and the final Version 7.6).

When this observation is compared with the values of maturity index calculated from the static

data collection, (see graph in figure 4 above), there is a correlation between the two results, in the

sense that the expected maturity level is attained when JHD transitioned from (version 7.4.1 to

7.51); which is the point at which lowest entropy was reached and the highest software maturity

index was attained. Another important observation is that, when JHD version transition static

data (size, the number of classes, the number of methods and number of attributes) were graphed

as shown in figure 7 below, it was observed that the number of methods consistently decreases

as the software evolves and transitions from one version to another.

Figure 7. Correlation Between software size, number of classes, methods, and attributes

6. CONCLUSION

When a software system evolves and transitions from one version to another, it is expected that

the new version will outperform the previous one and that the new version is better structurally

containing fewer defects; however, this may not be the case, as new unintended consequences

may be introduced, structure may be degraded and a measure of degradation and disorder may be

introduced. This study is a first step towards investigating the behavior of a large-scale matured

software system with a view to learn some lessons that can be used as a guideline in design,

development, and management of new and existing software systems. In this work, it was

consistently observed that JHD software components (classes, methods, and packages) that have

undergone change or modifications in JHD evolution tend to generate higher entropy values than

those with little or no unchanged; which is in line with an observation by [21] that, the most

frequently invoked classes/methods in object-oriented software system are the ones that have the

highest possibilities of being changed or modified. It is also observed that the entropy values

consistently decreases as the software system evolves from one version to another, indicating that

the software system was moving towards its optimal maturity level.

12 Computer Science & Information Technology (CS & IT)

When JHD evolved few versions away from the last version, it is observed that the maximum

maturity index attained was (0.8), confirming the statement made by [6] that, a software product

reaches its optimal maturity level when its maturity index approaches the value of 1.0. In this

research, when the optimal value of 0.8 SMI was reached, the entropy value remains stagnant

with little or no change. Also, it was at this turning point that the JHD entropy level tends

towards its lowest level, implying a possible correlation or connection between SMI and decrease

in entropy, (i.e. decrease in degradation or disorder). In future efforts, we intend to study large-

scale, middle-size and small-size object-oriented software systems that have gone through many

versions with a view to finding some other hints that may generally be used as a maturity

indicator, and a decision guideline for release readiness of software systems.

REFERENCES

[1] Martin and McClure, (1993). Software Maintenance: The Problems and Its Solutions Prentice Hall

Professional Technical Reference 1983 ISBN:0138223610

[2] Alessandro Murgia1, A., Concas1, Pinna1, S., Tonelli1, R., Turnu, I. (2009). Empirical, Study of

Software Quality Evolution in Open Source Projects Using Agile Practices

[3] Olague, H.M., Etzkorn, L.H., Cox, G.W. (2006). An Entropy-Based Approach to Assessing Object-

Oriented Software Maintainability and Degradation-A Method and Case Study. ;In Software

Engineering Research and Practice(2006)442-452

[4] Bianchi, A., Caivano, D., Lanubile, F., Visaggio, G. (2001). Evaluating Software Degradation

through Entropy, Dipartimento di Informatica - Universith di Bari, Italy

[5] Jones, C. (2006). The economics of Software Maintenance in the Twenty-First Century Version 3 –

February 14, 2006. http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf

[6] Pressman, R, Software Engineering - A Practitioner's Approach (6th Ed.). Newyork, NY: McGraw-

Hill. p. 679.ISBN 0-07-285318-2

[7] Basili, R. and Rombach, H. D. (1988). The TAME project: Towards Improvement-Oriented

Software Environments, IEEE Trans. on Software Engineering SE-14(6) (1988) pp.758–773.

[8] Becker-Kornstaedt, U., and Webby, R. (1999.) A Comprehensive Schema Integrating Software

Process Modelling and Software Measurement, Fraunhofer IESE-Report No. 047.99 (Ed.: Fraunhofer

IESE, 1999), http://www.iese.fhg.de/Publications/Iese_reports/.

[9] Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M. (2012). Graph-Based Analysis and

Prediction for Software Evolution Proceeding of the 34th International Conference on Software

Engineering pp. 419-429

[10] Gao, Q., Li, J., Xiong, Y. et al. (2016). High-confidence software evolution. Sci. China Inf. Sci.

(2016) 59: 071101. doi:10.1007/s11432-016-5572-2

[11] German, D. (2008). The Past, Present, and Future of Software Evolution. Frontiers of Software

Maintenance, FOSM 2008.

[12] Bergmann R. and Eisenecker U. (1996). Case-based Reasoning for Supporting Reuse of Object-

Oriented software: A case study, in Proc. Expert Systems 95 (1996) 152–169.

Computer Science & Information Technology (CS & IT) 13

[13] Johari, K., and Kaur, A.(). Effect of Software Evolution on Software Metrics: An Open Source Case

Study. ACM SIGSOFT Software Engineering Notes Page 1 September, Volume 36 Number 5, 2011.

[14] Deitel, H.M. & Deitel, P.J., (2003), Java How to Program, Prentice Hall, Upper Saddle River, NN,

USA (1

[15] Giesecke (2006). Dagstuhl Seminar Proceedings 06301 Duplication, Redundancy, and Similarity in

Software

[16] Mens, Kim., Kellens A., Tonella, P (2007), A Survey of Automated Code-level Aspect Mining

Techniques, Transactions on Aspect-Oriented Software Development, Special issue on Software

Evolution

[17] http://www.randelshofer.ch/oop/jhotdraw/index.html

[18] http://www.randelshofer.ch/oop/jhotdraw/Documentation/changes.html

[19] Hector M. Olague, Letha H. Etzkorn, Wei Li, Glenn W. Cox (2005). Evolution in software systems:

foundations of the SPE classification scheme. Special Issue: IEEE International Conference on

Software Maintenance (ICSM2005) Issue Overviews

[20] Opensource Software, www.sourceforge.net

[21] Joshi, P. & Joshi, R. (2006) Microscopic Coupling Metrics for Refactoring, IEEE Conference on

Software Maintenance and Software Reengineering.

AUTHOR

Sayyed G. Maisikeli is currently an Assistant Professor at Al-Imam Muhammad ibn

Saud Islamic University in Riyadh, Kingdom of Saudi Arabia. He obtained his dual

Master of Science degrees in Computer Science and Operations Research from

Bowling Green State University Ohio, and his Ph.D. from Nova Southeastern

University in Florida, USA. His research interest includes Software evolution, Software

visualization, Aspect mining, Software re-engineering and refactoring and Web

Analytics.

