

Natarajan Meghanathan et al. (Eds) : ICCSEA, WiMoA, SPPR, GridCom, CSIA - 2017

pp. 127– 138, 2017. © CS & IT-CSCP 2017 DOI : 10.5121/csit.2017.71110

PREDICTING SOFTWARE LAUNCH

READINESS IN A COMPLEX PRODUCT

Abhinav Sharma

HCL Technologies, Welwyn Garden City, UK

ABSTRACT

A simple model used successfully for estimating and tracking software defects to predict launch

readiness of software in a complex product is described in this paper. The model is based on

tracking the number of defects estimated to be found, actually found and resolved to measure

the quality of the product. Defect estimates can also help identify quality and process issues in

the development and testing phases.

The defect estimation tracking method described here covers the whole project and is split into

the three phases Initial Defect Estimates (based on historical data), Interim Revised Estimates

(based on actual performance of the project) and Final Defect Tracking (based on testing still to

do). The method is based on existing development processes of the team so is easier to

implement and has been successfully applied in several projects.

KEYWORDS

Software Reliability Growth Model, Defect Estimation, Software Quality Tracking, Schedule

Prediction

1. INTRODUCTION

Almost every project team wants to meet their schedule and cost targets. Delay in a project can

waste a lot of resources and may even result in cancellation of the project. In some cases a failed

project can also make a company go bankrupt [1]. Early projection of when a project would

complete with a quality product also enables the rest of the supply chain to align with the delivery

of the product.

This document describes the model used to predict launch readiness of software in a complex

product. After providing some background the paper explains the model used to predict launch

readiness. This is then explained with metrics from real projects. Finally, issues which need

further research and current best practices to adopt are briefly discussed.

To maintain confidentiality, the company, product and project names are not used in the paper

and the dates are changed as a further security measure.

128 Computer Science & Information Technology (CS & IT)

2. BACKGROUND

This paper covers complex projects with schedule ranging from six months to about two years.

The complexity here is best explained by a) source lines of code (kSLOC) which was over a

million, b) interaction of sub-systems which were mechanical, electronics and software and c) the

developed software which included embedded, back-office and personal computer applications

and low level drivers.

Low confidence in predictability of software launch readiness means that teams in different

geographies, including manufacturing, marketing cannot plan to complete brochures and other

marketing material to meet the launch date. To improve confidence in predicting launch readiness

several software process improvements were initiated and a model to predict launch readiness

was developed.

During development, product testing happens at different levels, like unit test, module test,

system test, certification test and in different geographic locations. Any of these tests (excluding

unit tests) can identify defects which are then included in the model. The reliability of the overall

system is tracked using a different mechanism which is not covered in this paper. However, the

software issues identified during system testing are treated as defects and are covered in the

model.

3. PRIOR PROCESS IMPROVEMENTS

The model described here depends upon the important improvements in defect management

which had been implemented within the team in earlier projects. These were:

• Defect Attributes,

• Defect Lifecycle, and

• Defect Tracking

3.1 Defect Attributes

The defect attributes were defined to manage the defects consistently across the teams. The key

attributes relevant to this paper are listed below.

• Priority – business priority for fixing the defect as Critical, Major or Minor.

• Severity – severity of the defect from the customer’s point of view as 1, 2, 3 and 4.

• State – defines the lifecycle state the defect is currently in. See section 4.2 for the states

defined for the Defect Lifecycle used in the model.

3.2 Defect Lifecycle

The following main states of a defect were defined and then used consistently throughout the

projects. The main states relevant to this model are listed below.

• New – the defect is created in this state.

• Assign – the defect is assigned to an engineer to resolve.

Computer Science & Information Technology (CS & IT) 129

• Reject – the defect is rejected as invalid.

• No Action Planned (NAP) – the defect is accepted as valid but will not be fixed.

• Fixed – the defect has been fixed.

3.3 Defect Tracking

Trend charts were used in the earlier projects to track the number of defects created and resolved

by week. Although the charts had basic information they provided a simple indicator on whether

the rate of finding defects is slowing down or not and if the fix rate is keeping up and closing the

gap or not.

4. ISSUES WITH EARLIER PROJECTS

The defect management process worked well but had limited business value in that it did not help

in planning for the launch of the products. It was not possible to predict launch readiness of a

product to plan related marketing and supply activities. This problem is illustrated by the

following two charts.

Figure 3 below shows the Defects Projection and Tracking chart for an older project close to

launch. The vertical axis shows the total number of defects found or fixed so far in the project and

the horizontal axis is date (which has been changed for reasons of confidentiality). Due to the

limited information the development team could not predict when the product would be ready for

launch and even at the code freeze date had a significant number of open defects. The project

launch in this case was delayed due to high level of open defects.

Figure 3 Project A – Defect Projection and Tracking

130 Computer Science & Information Technology (CS & IT)

A few improvements were made to the earlier defect find and fix trend charts. The charts now had

a target number of defects to be fixed and showed the maximum fix capability and minimum fix

capability of the development team during the hardening period. This helped the defect tracking

further by ensuring that the fix rate was kept close to the maximum fix capability.

The improved chart is shown in Figure 4 below. The vertical axis shows the total number of

defects found or fixed so far in the project and the horizontal axis is date (which has been

changed for reasons of confidentiality). The chart also shows that in the middle of the testing

when the fix rate started to slow down corrective actions were taken to bring it closer to the

maximum fix projection rate. The chart shows the corrective actions identified while tracking

• 2 spikes show where corrective actions to increase defect find rate were applied and

• one spike shows where corrective action to increase the defect fix rate during the system

testing was applied.

Although the updated defect projection and tracking chart was more useful than before but the

ability to predict launch readiness was still not there. Launch of this project was also delayed due

to the large number of open defects. This eventually led to the development of the software

launch readiness prediction model described in this paper.

Figure 1 Project B - Defect Projection and Tracking

Computer Science & Information Technology (CS & IT) 131

5. SOFTWARE LAUNCH READINESS PREDICTION MODEL

The following sections describe the key concepts used in the model and the software launch

readiness prediction model in detail.

5.1 Concepts Used in the Model

In this model a defect is defined as an error in the software programme, that when executed under

particular conditions will result in a failure. Failure means that a function of the software does not

meet user requirements.

Reliability is usually defined as the probability that a system will operate without a failure for a

specified time under specific operating conditions. Reliability is concerned with the time between

failures or its reciprocal, the failure rate. In this model the reliability is tracked as Failure based,

where, cumulative failures are recorded within a given time interval (of a week.)

Reliability can also be tracked as system shutdown and system reset rates separately. Any

software related shutdowns and system resets are treated as high priority defects. So the

assumption here is that if the defects are fixed in time then the rest of the reliability metrics will

also get under control.

5.2 Software Development Lifecycle

The Model proposed here uses historical data in the Initial Phase so the software development

processes used in the past projects are important. Minor changes in the processes can be ignored

but significant process changes mean that the historical data may be of little use for projection.

The software development lifecycle used is also important to understand the scope of the model.

For example,

Delivery: Incremental delivery? Iterative delivery? Software Reliability Growth Model (SRGM)

are used in the model for projecting the defect find rate so it is important to pick the right model.

Several SRGM differentiate between completion of implementation and start of system testing

(hardening). Some SRGM do allow for test to start in parallel with implementation but the model

used here assumes that over eighty percent of the development has been completed.

Defects: Lifecycle of a defect is important for the tracking part, for example, when are the defects

raised and how are these counted? A forum is used to review and accept failures found in any

testing as software defects using a consistent method of classifying, prioritising and allocating

defects.

Review: Existing code review/inspection processes? The software quality and by inference

estimate of defects depends on the quality and consistency with which review processes are used

during development.

5.3 Defect Estimating and Tracking Approach

The approach in the model is based on three phases:

132 Computer Science & Information Technology (CS & IT)

• The Initial Phase: Initial Defect Estimates & Fix Projection

• The Interim Phase: Revised Estimates & Update Fix Projection

• The Final Phase: Defect & Fix Projection with Test Tracking

5.3.1 The Initial Phase: Initial Defect Estimates & Fix Projection

Early in the development, estimate the total defects which will have to be fixed to meet the

quality target. There are several methods to estimate defects and my recommendation is to first

estimate the size and then use the size to predict the number of defects. This is because, given the

project requirements, the ‘size’ of the project should not change. Also, if the size can be measured

on delivery then it makes it easier to update the estimates. Unfortunately, there is no perfect

metric for measuring size so for simplicity kSLOC (kilo SLOC) is used in the model for size.

However, it is possible to estimate defects directly. In case the product size in kSLOC is

estimated then using the historical data estimate the number of defects injected for every 1

kSLOC code developed is determined.

Now all this is put together:

• Given the total defects to find use the Rayleigh curve (or another SRGM [2]) to project

defect find rate.

• From the available team estimate when engineers will complete implementation and start

fixing defects.

• Determine average fix capability from historical data, as number of days to fix a defect

per engineer.

This provides a chart showing the projected defect find and projected defect fix curves. Add the

defect estimate and the launch build date as targets on the chart. Finally, add actual find and fix

charts which will be populated regularly as part of tracking.

5.3.2 The Interim Phase: Revised Estimates & Update Fix Projection

Once majority of the development is complete, say 80% delivered using Earned Value Method

(or another appropriate method), measure the actual size (kSLOC) delivered and defects raised to

revise the defect estimate. This is the time to revise the estimates based on implementation

already completed, testing started and implementation still to complete.

Now update the following:

• The total defect estimate,

• Fix capability of the team from fixes delivered so far (if significant defects have been

delivered) and

• Team availability for the rest of the duration of the project.

Computer Science & Information Technology (CS & IT) 133

And obtain the following from the defect tracking database:

• Defects already found and

• Defects already fixed

Update the chart with the revised find and fix projections. This chart allows for tracking the rate

with which defects are being found and fixed and to take corrective actions as required to stay on

schedule:

• If defects find rate is low then possible options are to review and improve the test plan,

increase test resources etc.

• If defect fix rate is low then possible options are to review and improve the defect fix

process, increase engineers allocated to fixing defects etc.

5.3.3 The Final Phase: Defect & Fix Projection with Test Tracking

Once significant testing has completed then switch to using the defects arrival rate from different

tests and the amount of testing still to complete to estimate the remaining defects to find.

The first step is to review the total defect estimate made in the Initial Phase by comparing the

defects already found and fixed with the estimates. From the defects found so far determine the

rate with which different test groups were identifying defects. Using this rate of defect detection

and remaining tests still to complete, determine the updated estimate of the remaining defects to

find. Update the defect projection and tracking chart with the revised estimates providing the

remaining defects to find.

6. CASE STUDY

The model has been applied to the projects following Spiral Model and Scrum adapted for the

organisation. The model can also be applied to other lifecycles, for example, Waterfall lifecycle

provided the historical data used for estimates and forecasts followed similar lifecycles.

6.1 Projects Selected for the Case Study

The projects were selected from two product families. All the selected projects involved changes

in electronics, mechanicals and software. Software size for all the products was very similar and

grew over time as new projects added more features. Newer features and thus projects tended to

be more complex with higher interaction between different components.

The names and dates of the projects have been changed. The main discussion below is for project

C. Project D is an earlier project whose data is used as historical data. The final section provides

the charts from other projects where the same model was also used.

134 Computer Science & Information Technology (CS & IT)

6.2 Initial Phase

In project C, the current project, the defects were estimated using the analogous estimate method

where the defects in similar modules of an earlier software project (Project D) were used as a

starting point. The %Injected factor was derived for each module using the cost factors defined in

COCOMO [1] as a guide.

Table 1 Project C - Analogous Defect Estimates

The table above shows the number of defects found in Project D, estimated percent defects which

will be injected in Project C which then provides the most likely estimate for the defects. The

minimum, maximum and most likely estimates for the defects were derived in consultations with

the respective SMEs. The weighted estimate is given by the following equation.

6.3 Intermediate Phase

Reasonable calibration using data from the project is now possible as the project is about half way

through the testing. Use the development teams’ capabilities to fix defects so far to project the fix

trend for the rest of the project duration. Similarly, use the existing defect find trend to project the

defect find trend for the rest of the project duration.

The chart in Figure 1 shows the defect find and fix projections with the actual defects found and

fixed in the early stages of system testing. The vertical axis shows the total number of defects

found or fixed in the project to date and the horizontal axis is date (which has been changed for

reasons of confidentiality).

Computer Science & Information Technology (CS & IT) 135

Figure 1 Project C - Defect Projection and Tracking

6.4 The Final Phase

The chart in Figure 2 shows the projected arrival rate of the defects based on the testing still to

complete. The vertical axis shows the total number of defects found or fixed to date in the project

and the horizontal axis is date (which has been changed for reasons of confidentiality).

Figure 2 Revised Projection based on Test to Complete

For Project C, discussed earlier, the Table 2 below shows the initial estimates and the defects

already found in testing which then provides the number of defects still to find. This can also be

used as a sanity check for the estimate of defects still to find based on the defect arrival rate from

different tests in progress.

136 Computer Science & Information Technology (CS & IT)

Table 2 Review of Estimates in the Final Phase

7. APPLYING THE MODEL

The method described in this paper of defect find and fix tracking is fairly simple but there are

some assumptions which need to be resolved before the model can be successfully applied. The

main assumptions which the model relies on are described below.

7.1 Development Process

The method assumes consistency between development processes used in the current and the

previous projects for the Initial Estimation Phase. From this method’s point of view, this includes

having standard review process, definitions of defects, priority, severity etc. Benefits of process

improvements take time to percolate through the system so these should only be considered after

their first successful implementation.

7.2 Historical Data

The model assumes that historical data from previous projects is present and applies to the current

project. In absence of any historical data industry standard metrics will have to be used in the

beginning.

7.3 Tool Calibration

The models and techniques mentioned in this document have been developed under specific

environment and need to be calibrated for the organisation.

7.4 Initial Estimate of Total Defects

It is assumed that the team can estimate defects reasonably reliably. Developers find it difficult to

estimate number of defects but the method presented here requires the initial estimate of total

defects which will be found during development and test. One method which has been found to

work better is a mix of analogy and work break-down system (WBS). In this method break the

system into smaller sub-systems (WBS items) and then compare the new project with the defects

fixed in similar projects delivered in the past.

Computer Science & Information Technology (CS & IT) 137

7.5 Consistent Allocation of Defects

An important assumption is that the team is disciplined in using the related processes throughout

the software development lifecycle. Relation between failure and defect is often unclear so a

forum which is consistent in its analysis of the incoming failures may help the team. This forum

also needs to ensure that duplicate defects are not assigned but are rejected instead.

8. FURTHER RESEARCH WORK

Research in SRGM has included adaptations to existing models to take differences in

development and testing processes, for example, developing and testing phases in parallel,

restarting test after fixing defects, into account. Artificial intelligence is also being used, to

improve learning from the historical database which can then be used to predict schedule and

quality of future projects.

Constructive Cost Modelling [1] (COCOMO) was developed by Barry Boehm and is used by

several researchers and tool vendors, for example, COSTAR [7], Cost Xpert[4]. Software

Lifecycle Management by QSM [3] uses historical data, Raleigh distribution to manage complete

software planning and tracking tool SLIM-Suite. Bayesian Belief Network is another way to

predict software (or product) quality (and risks) which AgenaRisk [6] is using.

Further research is required in the following main areas.

• Reliable early defect estimates with limited information

• Machine learning techniques to improve estimates and predictions

• Data mining of the defects database for estimates and predictions

9. CONCLUSIONS

Delivering reliable software on schedule is a concern in all development organizations. With

increase in size and complexity, several vendors and research institutes are looking into tools and

methods on how to improve predictability in software development. Most of these tools are

expensive and require significant effort to learn and normalize for the development teams to start

getting benefits.

The method described in this paper is simple and practical and any team, disciplined to use

processes consistently can start using it with little additional effort. However, initially, the team

will need some historical data to base their estimates and predictions on. The method uses tools

and concepts readily available to all. The method has been successfully applied in several projects

in the past with excellent results. The method can be easily enhanced as more and more data is

collected within the development teams without tying them to an external vendor.

REFERENCES

[1] Robert N. Charette, Why Software Fails, 2008, http://spectrum.ieee.org/computing/software/why-

software-fails, last accessed on 11th August 2017.

[2] Reliability Growth Model, http://www.ece.uvic.ca/~itraore/seng426-07/notes/qual07-8.pdf, last

accessed 11th August 2017.

138 Computer Science & Information Technology (CS & IT)

[3] Barry W Boehm et al, Software Cost Estimation with COCOMO II, 2000, ISBN-10: 0137025769

[4] CoStar, http://www.softstarsystems.com/

[5] Cost Xpert, http://www.costxpert.com/

[6] Software Lifecycle Management (SLIM), http://www.qsm.com

[7] AgenaRisk, http://www.agenarisk.com

[8] P.K. Kapur, D.N. Goswami, Amit Bardhan, Ompal Singh, Flexible software reliability growth model

with testing effort dependent learning process, Applied Mathematical Modelling, Volume 32, Issue 7,

July 2008, Pages 1298-1307

[9] M.Xie, G.Y.Hong, C.Wohlin A Practical Method for the Estimation of Software Reliability Growth

in the Early Stage of Testing, http://www.wohlin.eu/issre97.pdf last accessed 11th August 2017.

AUTHOR

Abhinav Sharma is a PMP® (PMI certified) professional with more than 25 years

of proven track record in Product/Program/Project Management and development.

Main products covered Wearable IoT, Consumer products, Multi-function printers

and embedded software. Proven track record of delivery to schedule of large,

complex, multi-site, multi-discipline projects and implementing lean/agile/process

improvement initiatives.

