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ABSTRACT 

Bayesian optimization for deep learning has extensive execution time because it involves several 

calculations and parameters. To solve this problem, this study aims at accelerating the 

execution time by focusing on the output of the activation function that is strongly related to 

accuracy. We developed a technique to accelerate the execution time by stopping the learning 

model so that the activation function of the first and second layers would become zero. Two 

experiments were conducted to confirm the effectiveness of the proposed method. First, we 

implemented the proposed technique and compared its execution time with that of Bayesian 

optimization. We successfully accelerated the execution time of Bayesian optimization for deep 

learning. Second, we attempted to apply the proposed method for credit card transaction data. 

From these experiments, it was confirmed that the purpose of our study was achieved. In 

particular, we concluded that the proposed method can accelerate the execution time when deep 

learning is applied to an extremely large amount of data. 
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1. INTRODUCTION 

 
In this paper, we propose a deep-learning automatic parameter-tuning method using an improved 
Bayesian optimization. 
 
Deep learning is a new approach, which has recently attracted considerable attention in the field 
of machine learning. It considerably improves the accuracy of abstract representations by 
reconstructing deep structures, such as the neural circuitry of the human brain. Moreover, deep 
learning algorithms have been honored in various competitions, such as the International 
Conference on Representation Learning. 
 
However, a problem with deep learning is that its performance cannot be optimized unless 
multiple parameters are appropriately tuned. Manual tuning of the parameters is performed based 
on the experience and intuition of experts. To address this problem, many studies have 
investigated automatic parameter tuning. Furthermore, it has been proposed that the learning 
algorithm’s parameters can be determined by automatic parameter tuning. However, this requires 
the original machine-learning algorithm to be repeated multiple times. If applied to a heavy 
learning model, such as deep learning, this process becomes time-consuming. 
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Therefore, in this study, we propose a deep-learning automatic parameter tuning method using an 
improved Bayesian optimization, which is one of the methods used in automatic parameter-tuning 
algorithms. The proposed method aims at accelerating the execution time of Bayesian 
optimization for deep learning. This method focuses on the relation between output values and the 
accuracy of each neuron. The output value of each neuron is obtained by substituting the total 
input into the activation function (Relu). If this value is 0, then the feature value is also 0, 
indicating that the neuron could not successfully extract the feature. In other words, the 
probability that learning does not proceed increases as the number of 0’s in the output value of 
each neuron increases. From this fact, when learning is performed using this method, the number 
of 0s in the output value of each neuron excessively increases and learning stops. By performing 
learning using the following parameters, the execution time of Bayesian optimization is 
increased. 
 
The novelty of this research is that Bayesian optimization is applied to deep learning. Bayesian 
optimization has been applied to light learning models, but there have been no studies applied to 
heavy learning models like deep learning. In this research, we explore the possibility of deep 
learning using Bayesian optimization through experiments with actual credit card data. 
 
This study is summarized as follows: first, in section 2 and 3, we describe deep learning and 
Bayesian optimization. In section 4, we propose the improved Bayesian optimization for deep 
learning. In section 5 and 6, we describe the experiment and results of the study, respectively. 
Finally, in section 7, we discuss our conclusions and future work. 
 

2. DEEP LEARNING 

 
Deep learning is a new approach, which has recently attracted considerable attention in the field 
of machine learning. 
 
Deep learning is a generic term for multilayer neural networks that have been studied over several 
years [1]-[3]. Multilayer neural networks reduce the overall calculation time by performing 
calculations on hidden layers. Therefore, these networks are prone to excessive overtraining 
because an intermediate layer is often used to approximate each layer. 
 
Nevertheless, technological advancements have addressed the overtraining problem, while the use 
of GPU computing and parallel processing has increased the tractable number of hidden layers. 
 
A sigmoid or tanh function has been commonly used as the activation function (Equations (1) and 
(2)). However, recently, the maxout function has also been used (section 2.1) and the dropout 
technique has been implemented to prevent overtraining (section 2.2). 

 

                                              (1) 
 

                                           (2) 

 

2.1. Maxout 

 
The maxout model is simply a feed-forward architecture such as a multilayer perceptron or deep 
convolutional neural network that uses a new type of activation function, the maxout unit [3].  

 

In particular, given an input  (  may be either  or a hidden layer’s state), a maxout 
hidden layer implements the function 
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                                                 (3) 

 

where  ,  and  are learned parameters. In a 

convolutional network, a maxout feature map can be constructed by taking the maximum across 
$k$ affine feature maps (i.e., pool across channels, in addition to spatial locations). When training 
with the dropout, in all cases, we perform element-wise multiplication with the dropout mask 
immediately prior to multiplication by weights and the inputs not dropped to the max operator. A 
single maxout unit can be interpreted as a piecewise linear approximation of an arbitrary convex 
function. In addition to learning the relationship between hidden units, maxout networks also 
learn the activation function of each hidden unit.  

 
The maxout approach abandons many of the mainstays of traditional activation function design.  
Even though the gradient is highly spare, the representation produced by maxout is not sparse at 
all, and the dropout will artificially sparsify the effective representation during training. Although 
the maxout unit may saturate on one side or another, this is a measure zero event (so it is almost 
never bounded from above).  Because a significant proportion of the parameter space corresponds 
to the function delimited from below, maxout learning is not constrained. Moreover, the maxout 
function is locally linear almost everywhere, in contrast to many popular activation functions that 
demonstrate significant curvature. Considering all these deviations from thestandard practice, it 
may seem surprising for the maxout activation functions to work however, we find that they are 
very robust, easy to train with dropout, and achieve excellent performance. 

 

                                               (4) 

 

                                           (5) 

 
2.2. Dropout 

Dropout is a technique that can be applied to deterministic feedforward architectures that predict 

an output  given an input vector  [3]. 
 

In particular, these architectures contain a series of hidden layers . 

Dropout trains an ensemble of models comprising a subset of the variables in both  and . The 

same set of parameters  are used to parameterize a family of distributions , where 

 is a binary mask determining which variables to include in the model. For each 

example, we train a different submodel by following the gradient  for a different 

randomly sampled . For many parameterizations of  (usually for multilayer perceptrons) the 

instantiation of the different submodels  can be obtained by element-wise 

multiplication of  and  with the mask .  
 

The functional form becomes important when the ensemble makes a prediction by averaging the 
submodels' predictions. Previous studies of bagging averages used the arithmetic mean. However, 
this is not possible with the exponentially large number of models trained by dropout. 
Fortunately, some models can easily yield a geometric mean. When 

, the predictive distribution defined by renormalizing the 

geometric mean of  is simply given by . In other 
words, the average exponential prediction for many submodels can be computed simply by 
running the full model with the weights divided by two. This result holds exactly in the case of a 
single layer softmax model. Previous work on dropout applies the same scheme to deeper 

architectures, such as multilayer perceptrons, where the  method provides only an 
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approximation of the geometric mean. While this approximation is not mathematically justified, it 
performed well in practice. 
 

3. BAYESIAN OPTIMIZATION 

 
The automatic parameter-tuning method automatically determines the machine-learning 
parameters. Parameters are considerably important in machine learning, and the accuracy 
significantly varies depending on how the parameters are set. However, a great amount of 
knowledge and experience is required to determine appropriate parameters. Automatic parameter 
tuning can complement knowledge and experience and make machine learning easier to handle. 
 
Grid search is one of the automatic parameter-tuning techniques. In this technique, multiple 
parameter combinations are made to determine the parameter with the best accuracy. However, 
the problem with grid search is that there is a possibility that some parameter combinations which 
were not tested may actually be the best parameters. However, if the number of combinations of 
the tested parameters is increased, the execution time will be prolonged. 
 
Another automatic parameter-tuning technique is Bayesian optimization. In this technique, 
several parameters are tested and the parameter combinations are determined by predicting the 
accuracy of parameter combinations that have not been tested. This method determines the 
parameters by predicting a combination of multiple parameters and a parameter having a high 
probability of being the most accurate one based on multiple parameters and their precision. 
 
1) Predict the prior distribution of parameter accuracy in the Gaussian process. 

 
2) Predict the posterior distribution from prior distribution by Bayesian estimation. 

 
3) Search the combinations of parameters with the highest accuracy from posterior distribution 

using the Markov chain Monte Carlo (MCMC) method. 
 

4) Repeat steps 1)–3) to select the most accurate parameter. 
 

In the Gaussian process, the prior distribution was assumed to be a normal distribution. From the 
obtained data, the probability that data is obtained under certain parameters was defined as 
likelihood. The Gaussian process uses the fact that the likelihood approaches the posterior 
distribution. To find parameters with high probability of high accuracy from the accuracy of 
multiple models, there are many methods. In this paper, we use Metropolis-Hastings (MH) 
method. 
 
In such a procedure, it is possible to predict a combination of parameters with the highest 
accuracy and high probability. The problem in Bayesian optimization is that the combination of 
the predicted parameters may not be the best parameter. 
 
This method is a method for predicting accuracy and parameter prior distribution. The method is 
performed in the following procedure. This method predicts the accuracy and parameter prior 
distribution. It has the following procedure: 
 
1) Find the accuracy of multiple parameters. 

 
2) Assume that the accuracy of the obtained parameters follows the normal distribution and 

predict the prior distribution. 
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By implementing this procedure, prior distribution can be predicted. 
 
Bayesian estimation is one of the methods used for Bayesian optimization. This method predicts 
the accuracy and posterior distribution of parameters. In this method, the posterior distribution is 
obtained using the Bayes’ theorem from the accuracy of the prior distribution, which is obtained 
using the Gaussian process and multiple parameter combinations. Using Bayesian estimation, the 
posterior distribution can be predicted. 
 
The MCMC method is one of the methods used for Bayesian optimization [4]. This method 
searches a parameter combination with the highest accuracy in the posterior distribution. This 
method is a combination of the Markov chain and Monte Carlo method, each of which is 
explained as follows: 
 

• Markov chain: The next state is determined by the previous state; however, it is not 
affected by the previous state. 
 

• Monte Carlo method: This method generates random numbers from various probability 
distributions. 

 
The MCMC method involves the use of various methods, such as the Guinness sampling and 
Metropolis–Hastings (MH) method. The MH method is generally used in this study and has the 
following procedure: 
 
1) Determine the transition destination of the point where multiple parameters obtained by the 

Gaussian process are combined. 
 

2) If the transition destination point has a higher probability of higher accuracy than the 
transition point before the transition, the transition is rejected with a certain probability 
when the probability of high accuracy is low. The reason for rejection is that it can enter a 
different mountain by transitioning to a point with lower precision and can get off the 
mountain of the local solution. 
 

By repeating such a procedure, it is possible to search parameter combinations with a high 
probability of high accuracy in the posterior distribution. 
 
The difference between grid search and Bayesian optimization is whether or not to consider 
parameters that have not been tested. In grid search, parameters are tested at regular intervals; 
however, because there are parameters that are not tested, it is possible that parameters with the 
best accuracy exist among these parameters. Bayesian optimization compensates for the defects 
of grid search in order to estimate the parameters with the highest accuracy among all the 
parameters from the accuracy of multiple and select parameters. However, as the estimated 
parameter accuracy is not necessarily the highest, there is a possibility of choosing a wrong 
parameter if the trial count is small. 
 
This study deals with one of the methods used to accelerate Bayesian optimization by aiming to 
speed up the MCMC method by locally creating an approximate posterior distribution [5]. The 
MCMC method creates a posterior distribution from multiple parameters and precision values, 
determines the next transition destination, and obtains the accuracy of the transition destination 
parameter through the model; however, this operation is time-consuming. Therefore, speeding it 
up will also speed up the operation of the MCMC method. 
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4. PROPOSED METHOD FOR ACCELERATING THE MCMC METHOD 

 
In this research, the proposed method aims to accelerate the execution time of Bayesian 
optimization for deep learning. It focuses on the relation between output values and the accuracy 
of each neuron. The output value of each neuron is obtained by substituting the total input into the 
activation function (Relu). If this value is 0, the feature value is also 0, indicating that the neuron 
was not successful in extracting the feature. In other words, the probability that learning does not 
proceed increases as the number of 0s in the output value of each neuron increases. Consequently, 
when learning is performed, the number of 0’s in the output value of each neuron excessively 
increases and learning is stopped. By performing learning with the following parameters, the 
execution time of Bayesian optimization is increased. 
 
The feature of the proposed method is to assess when learning becomes excessive and then stop 
it. Normal Bayesian optimization follows the procedure summarized below: 
 
1) Find the accuracy of the deep-learning model with randomly determined parameters. 

 
2) Find parameters with high probability of high accuracy from the accuracy of multiple 

models. 
 

3) Calculate the accuracy of the deep-learning model with the obtained parameters. 
 

4) Accurately compute parameters with high accuracy by adding the obtained parameters and 
accuracy. 
 

5) Repeat steps 3) and 4) multiple times. 
 

6) Select the parameter with the highest accuracy. 
 
In this method, low-accuracy learning is performed for a number of learning times, which is time-
consuming. The proposed method solved this problem and follows the procedure summarized 
below: 
 
1) Find the accuracy of the deep-learning model with randomly determined parameters 

. 
2) Find parameters with high probability of high accuracy from the accuracy of multiple 

models. 
 

3) Calculate the accuracy of the deep-learning model with the obtained parameters. At this 
time, the output of the first and second layers of the model is obtained; learning which has 
not advanced is stopped. 
 

4) Accurately compute parameters with high accuracy by adding the obtained parameters and 
accuracy. 
 

5) Repeat steps 3) and 4) multiple times. 
 

6) Select the parameter with the highest accuracy. 
At the point where step 3) is different from normal Bayesian optimization, by stopping learning 
that has not advanced by performing this procedure, the proposed method can increase the 
execution time. 
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We used Python as the implementation language. The reason for using Python is because it can 
use TensorFlow and because it contains libraries that allow fast calculation of NumPy arrays. 
 
In addition, a program for deep-learning modeling called TensorFlow was used because it allows 
calculating only the necessary parts when obtaining the output value of the neuron necessary for 
implementing the proposed method. This is because the speed can be increased. 
 
Implementation was performed according to the following procedure. 
 
1) Create a program to develop deep-learning models for deep learning. 

 
2) Prepare a program to calculate the number of neuron output value 0 from the deep-learning 

model. 
 

3) Create a program that can stop the model to learn from the number of neuron’s 0 output 
values. 
 

4) Create a Bayesian optimization program. 
 

5) Combine a program that can stop the model to learn from the number of neuron’s 0 output 
values and a program of Bayesian optimization. 

 
Development was conducted in the following environment: 
 

Table 1.  The Development Environment 

OS Memory # of CPU Python TensorFlow 

Amazon Linux 1GB 1 Anaconda  
3-4.2.0 

0.11.0 

 
TensorFlow is an open-source software library for numerical calculation using a data flow graph. 
As it was developed for machine-learning applications and deep-learning research, it comes with 
many functions essential for deep learning. TensorFlow was utilized due to its suitability to the 
intended purpose of this study [6]. 
 
TensorFlow can speed up calculation time by performing only the necessary calculations. We will 
explain the procedure when we want to obtain the output y(x) of the intermediate layer of the 
three-layer neural network, as shown in Fig.1. Calculations are made according to the following 
procedure. 
 
1) First, define the number of neurons in each layer, weight (w), bias (b), weight adjustment 

method (e.g., gradient descent method), activation function, and calculation formulae. 
 

2) Assign training data and real values, such as weight $w$, to the definition. 
 

3) We used weight (w), bias (b), and input (x) from the output y(x) calculation formula. 
 

4) Construct the minimum necessary model from the judged contents. In other words, create a 
model with layers other than the output layer. 

 
By design, TensorFlow makes it possible to assess which calculations are essential and perform 
those calculations only. 
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Figure 1.  Auto Encoder  
 

5. EXPERIMENT 1: IRIS DATASETS 

 
To verify the effectiveness of the proposed method, we used the Iris dataset to conduct an 
experiment [7]. The dataset contained 3 classes of 50 instances each, where each class referred to 
a type of an iris plant. (Table 2) 
 

Table 2.  The Iris Dataset 

# of data # of training # of test # of attributes # of classes 

150 120 30 4 3 

 
Bayesian optimization and the proposed method were performed 5 times. The parameters 
determined by Bayesian optimization are the Neuron number (1 - 30), the learning coefficient of 
the gradient descent method (0.1, 0.2, and 0.3), and the number of learning (2 - 1001). The 
experimental results are summarized in Tables  3 and 5. 
 

 
Table 3.  The Result of Bayes Oprimization (Iris) 

 
# of learning # of neurons Accuracy Calculation time(s) 

28206 772 0.9833 153.7447 

27202 782 0.9833 154.5802 

27248 797 0.9833 153.6453 

26004 796 0.9833 151.6539 

27259 805 0.9833 154.4179 
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Table 4.  Result of the Proposed Method (Iris) 

     # of 

learning 

(Original) 

 # of 

learning 

(Actual) 

 # of learning 

(Reduction) 
# of Models 

(Low 

Accuracy)  

# of total 

nurons  
Accuracy Calculation 

time(s) 

     27316   16256   11060   17   831   0.9916   145.9402  

     27212   16195   11017   21   795   0.9833   145.6388  

     29067   23083   5984   10   760   0.9833   150.9196  

     27035   19124   7911   13   820   0.9916   145.0893  

     26590   18446   8144   13   822   0.9833   146.4700  

 
Based on the results, a speed increase of approximately 9s without loss in precision was observed. 
However, because the dataset and the decrease in the time needed were small, we considered 
testing our method using a larger dataset; therefore, we conducted experiments with credit card 
transaction data. 

 

6. EXPERIMENT 2: CREDIT CARD TRANSACTION DATASET 

 
The datasets for credit card transactions are as follows: 
 
1) Credit approval dataset 

 
2) Card transaction dataset 

 

6.1. Credit approval dataset 

 
For each user submitting a credit card application, a record of the decision to issue the card or 
reject the application is maintained. This is based on user attributes in accordance with general 
usage trend models. 
 
However, to reach this decision, it is necessary to combine multiple models, each referring to a 
different clustered group of users. 
 

6.2. Credit card transaction data 

 
In actual credit card transactions, the data is complex, constantly changing, and continuously 
arriving online as follows: 
 

i. Data of approximately one million transactions arrive daily. 
ii. Each transaction takes less than 1 s to complete. 

iii. Approximately 100 transactions are done per second during peak time. 
iv. Transaction data arrive continuously. 

 
Therefore, it is accurate to consider credit card transaction data as a stream. However, even if we 
use data mining for such data, an operator can only monitor approximately 2,000 transactions per 
day. Thus, suspicious transaction data should be effectively detected by analyzing less than 
0.02% of the total number of transactions. In addition, fraud detection from the analysis of 
massive amounts of transaction data is extremely low because real fraud occurs at an extremely 
low rate, i.e., within a range of 0.02% - 0.05% of the amount of all analyzed transaction data. 
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In a previous study, the transaction data in CSV format were described as being attributed to a 
time order [8]. Credit card transaction data have 124 attributes, of which 84 are transactional data, 
including an attribute used to indicate fraudulent activity. The remaining data are behavioral data 
and are relevant to credit card usage. The inflow file size is approximately 700 MB per month. 
 
Mining the credit card transaction data stream involves difficulties as it requires performing 
efficient calculations on an unlimited data stream with limited computing resources; therefore, 
many stream-mining methods seek an approximate or probabilistic solution instead of an exact 
one. However, as actual unauthorized credit card use is very less, these imprecise solutions do not 
appropriately detect frauds. 
 
We are currently researching how to apply credit card data to ordinary deep learning [9], [10]. 
 
We apply the method proposed in this paper to credit card transaction data. As experiments 
cannot be conducted at universities due to security issues, we collaborate with non-academic 
researchers. 
 

6.3. Credit card transaction data (Random Dataset) 
 
In this study, the proposed method was also validated using a large credit card transaction dataset. 
We constructed this dataset from the actual credit card transaction dataset, which contained 129 
attributes with random values within the same range specified for each attribute. The dataset 
contained approximately 32,000 transactions, including approximately 218 instances of illegal 
usage. While pre-processing deleted attributes, including null value and character string 
attributes, the number of attributes changed from 129 to 64 attributes. Because this dataset 
contained random values, it cannot be used to evaluate accuracy. Instead, experiments were 
conducted to confirm whether the calculation time could be reduced using the proposed method. 
 
The percentage of fraudulent transactions in the dataset was considerably low. In the experiment, 
we used all illegal activity occurrences (218 instances) and a sample of normal usage activity 
(218 instances). The results of the experiments are summarized in Tables 5 and 6. 
 

Table 5.  Result of Bayes Oprimization (Credit Card) 

# of learning # of neurons Accuracy Calculation time(s) 

14942 1526 0.5481 208.9575 

 

Table 6.  Result of the Proposed Method (Credit Card) 

     # of 

learning 

(Original) 

 # of 

learning 

(Actual) 

 # of 

learning 

(Reduction) 

# of Models 

(Low 

Accuracy)  

# of 

total 

nurons  

Accuracy Calculation 

time(s) 

     16174   11657   4517   7   1568   0.5298   188.7191  

 
Based on the experimental results, our method could speed up the execution time by 
approximately 20s while maintaining the same precision. This result showed that it is highly 
probable that the proposed method can speed up the execution time if the amount of data is large. 
 

6.4. Credit card transaction data (Real Dataset) 

 
In this paper, we apply the proposed method for real transaction dataset from real system. 
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Because all the data is enormous, sampled data was used. The use samplinged dataset as follow 
(see in Table 7) 

Table 7.  Credit Transaction Dataset 
 

Number of Instances:   120,000  

Number of Attributes   125 

Number of Instance for Training:   20,000 

Class Distribution for Training:   illegal : 382 (1.91%), legal : otherwise. 

Number of Instance for Test:   100,000 

Class Distribution for Test:   illegal : 1148 (1.148%), legal : otherwise. 

 
Verification was conducted while changing the number of sampling. 
 
In the experiment, we use the following environment. 
 

i. OS Linux (VM on Windows7 64bit) 
ii. CPU Intel i303229 3.30 GHz 

iii. Memory 4GB 
iv. Disk 500GB  

 
We used the following indexes for evaluation. 
 

i. Correct answer rate: Among the transactions deemed to be illegal, the ratio of 
transactions that were illegal 
 

ii. Detection rate: The ratio of transactions judged to be invalid among all illegal 
transactions 

 
Table 8 shows the experimental results.  
 
As for the tuning (sampling 1), since there was a date to distinguish all test data as illegal, the 
result rate was low. For tuning (sampling 2), the detection rate was lower than Deep Learning 
alone, but the accuracy rate slightly improved. Since the number of trials is small, it is necessary 
to repeatedly verify in order to obtain a general-purpose result. 
 

Table 8.  Result of the Proposed Method (Real Credit Card) 

    Deep 

Learning 

(10 times 

learning) 

Deep 

Learning 

(20 times 

learning) 

Auto-Tuing 

(sampling 1)  
Auto-Tuning 

(sampling 2) 

# of Illegal Judgment   2986 1862   21887  1473 

# of True Illegal in Judgement  567  574   608   466 

Correct Answer Rate  18.99%  30.83%   2.78%  31.63% 

Detection Rate  49.39%  50.00%  52.96%  40.59% 
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7. CONCLUSIONS 

 
In this paper, we proposed a deep-learning automatic parameter-tuning method with improved 
Bayesian optimization. 
 
Deep learning is a new approach, which recently attracted considerable attention in the field of 
machine learning. However, a problem with deep learning is that it cannot demonstrate 
satisfactory performance unless multiple parameters are appropriately tuned. Bayesian 
optimization for deep learning is time-consuming because it involves several calculations and 
parameters. To solve this problem, this study aimed to accelerate the execution time by focusing 
on the activation function’s output that is strongly related to accuracy. In this study, we developed 
a technique to accelerate the execution time by stopping the learning model so that the activation 
function of the first and second layers would become zero. Two experiments were conducted in 
order to confirm the effectiveness of the proposed method. We first used the Iris dataset, 
implemented the proposed method, and compared its execution time with the execution time of 
Bayesian optimization. Based on the experimental results, the proposed method could accelerate 
the execution time by approximately 9s while maintaining the same precision. Therefore, we were 
successful in accelerating the execution time of Bayesian optimization for deep learning. Second, 
we applied our proposed method to analyze the credit card transaction data. Based on the 
experimental results, our method could accelerate the execution time by approximately 20s while 
maintaining the same precision. The results of the experiments demonstrate that the purpose of 
this study was achieved. In particular, we concluded that the proposed method can achieve a 
faster acceleration when deep learning is applied to an extremely large amount of data. 
 
In the future, we will apply the proposed method to analyze the actual credit card transaction data 
and verify the acceleration effect with real large-scale data. We will also consider improving the 
Bayesian estimation algorithm. 
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