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ABSTRACT 

 
Computer vision algorithms are essential components of many systems in operation today. 

Predicting the robustness of such algorithms for different visual distortions is a task which can 

be approached with known image quality measures. We evaluate the impact of several image 

distortions on object segmentation, tracking and detection, and analyze the predictability of this 

impact given by image statistics, error parameters and image quality metrics. We observe that 

existing image quality metrics have shortcomings when predicting the visual quality of virtual 

or augmented reality scenarios. These shortcomings can be overcome by integrating computer 

vision approaches into image quality metrics. We thus show that image quality metrics can be 

used to predict the success of computer vision approaches, and computer vision can be 

employed to enhance the prediction capability of image quality metrics – a reciprocal relation.  
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1. INTRODUCTION 

 
In today’s world computer vision systems have become a central part of modern life. Computer 

vision in cars reads street signs and markers, in assembly lines checks production and processes, 

and almost every camera uses computer vision for face detection or artistic effects. In most 

scenarios Computer Vision is employed to analyze visual information. However, Computer 

Vision is also increasingly used to generate visual information, for example in augmented reality 

applications. 

 

For all the different scenarios of computer vision the robustness of the computer vision 

algorithms is important. As robustness we consider the impact that common types of image errors 

have on a given computer vision algorithm. Classical image errors stem from image acquisition, 

and are given by thermal noise or blur. Each computer vision system relying on cameras needs to 

be robust against such noise, at least to a certain degree. Compression artifacts, like JPEG 

blocking or JPEG2000 ringing artifacts, become a matter of concern as soon as data for computer 

vision algorithms is retrieved from space limited storage or after distribution over throughput-

limited channels, which make data size and respectively compression critical. 

 

Today we see an increasing amount of visual information that is synthetically generated. For such 

content novel types of errors occur, which are scene composition errors. Such scene composition 
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errors occur when synthetic objects are algorithmically merged with captured content, and the 

synthetic addition is positioned incorrectly, scaled wrongly or not aligned with the captured 

environment. 

 

This paper analyzes the impact of classical image errors and novel scene composition errors on 

standard computer vision approaches. For this analysis an image database is necessary, which 

contains both classical image distortions and scene composition errors, and comes with additional 

information like ground truth segmentation data, object information or subjective evaluations. 

Section 2 introduces this database. 

 

We analyze the impact of distortions for three very basic computer vision algorithms, which are 

object segmentation, object tracking and object detection. In Section 3 we introduce these 

computer vision algorithms and the experiments we have set up to analyze the distortion impact. 

Knowing the impact of a distortion on computer vision algorithms for a single image is 

interesting, yet far more interesting is the ability to predict the impact of distortions. A good 

prediction can enable system designers to define robustness levels for computer vision systems. 

In Section 4 we correlate the distortion impact to three image quality metrics, which are 

subjective opinion scores, scores based on image statistics and scores based on the human visual 

system. 

 

Finally, in Section 5, we switch the perspective. After having evaluated how image quality 

metrics can be used to predict computer vision performance, we introduce an approach which 

employs computer vision algorithms for enhanced image quality assessment. We thus have image 

quality metrics to predict computer vision performance and computer vision to enhance image 

quality metrics - a reciprocal relation. 

 

2. THE IMAGE DATABASE 

 
In order to conduct experiments according to the above mentioned motivation an image database 

is necessary that fulfills several requirements. Most importantly, color images are required which 

are distorted by classical errors such as noise and compression artifacts. Second, the images need 

to contain synthetic objects which can be modified to model scene composition errors. Third, 

ground truth segmentation data needs to be available to conduct object segmentation and tracking 

experiments. Last, to allow comparisons to subjective assessments, mean opinion scores (MOS) 

need to be available for the distorted images. 

 

Several image databases exist that fulfill one or few of these requirements. The LIVE and 

TID2013 database [1], [2] are databases based on real images which are distorted by classical 

image errors and subjectively evaluated. Both databases lack the ability to modify scene objects, 

and ground truth segmentation data is missing. The BSDS500 database [3] contains images and 

segmentation data, yet also lacks the ability to modify objects and has no subjective evaluations 

for the images. As - to our knowledge - no suitable database exists, we present the Synthetic 

Image Database SSID, which we have created from fully synthetic scenes with the goal to enable 

scene composition modifications, image distortions and additional data like depth maps and 

segmentation data. This database was evaluated by human assessors, and MOS have been 

calculated for all distorted images [4]. 

 

Figure 1a shows a set of scenes contained in the database and presents a depth map (Figure 1b) 

and a segmentation map (Figure 1c) which can be easily rendered from the synthetic data. In the 

database Gaussian blur, white noise, JPEG and JPEG2000 coding artifacts as well as object 

scaling, rotation and translation are implemented as distortions. For the distorted images roughly 

20.000 opinions have been obtained from 200 assessors in subjective evaluations, and mean 
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opinion scores have been calculated. The database is available online for image quality associated 

research [5]. 

 

Figure 1.The Synthetic Image Database [4]. 

3. COMPUTER VISION – ALGORITHMS AND EXPERIMENTS 

On the image database presented in Section 2 we test three computer vision algorithms, which are 

object segmentation, object tracking and object detection. By measuring the success of the 

computer vision algorithm we can derive the impact that a given image distortion has on a 

computer vision approach. For these tests we observe a certain object per scene (e.g. the 

computer, given in Figure 2 which is segmented, tracked and detected in the experiments 

described in the following sections. 

3.1. Object Segmentation 

A well established and widely used image segmentation approach is presented by Achanta et al. 

[6]. SLIC Superpixels are known for their high boundary recall at a low computational 

complexity, at the cost of oversegmentation. The low computational complexity makes SLIC 

Superpixel segmentation applicable even for real-time requirements. We evaluate experimentally, 

how much the boundary recall of SLIC Superpixel segmentation is affected by image distortions. 

Boundary recall �� here is defined as the ratio between correctly recalled boundary pixels in the 

test image segmentation � and total number of boundary pixels in the ground truth segmentation 

�: 

 ����, �� = 	
��,��
	
���  (1) 

where �
��, �� are the boundary pixels of ground truth � matching the boundary pixels of test 

image segmentation �, and �
��� are the boundary pixels of � only. We compare the boundary 

recall of each test image segmentation � to the boundary recall of its reference image 

segmentation �, and record the impact on segmentation �������� as the ratio 

 ��������  = 	���,��
	���,�� = 	
��,��

	
��,��. (2) 
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3.2. Object Tracking 

Optical flow was introduced by Horn and Schunck in 1981 already [7] and presents a common 

basis for object tracking between frames. In our experiment we “track” scene objects from a 

reference image to the distorted test images. Using the ground truth segmentations we can 

evaluate how many object pixels of the distorted image are tracked correctly from the reference 

image. For a total number of pixels � and correctly tracked pixels � we calculate the impact on 

tracking ������ as the ratio 

 ������  = �
�. (3) 

 

Figure 2. Exemplary Training Object for Object Detection. 

3.3. Object Detection 

A common way of detecting objects in images is to compare image features. The Scale-Invariant 

Feature Transform (SIFT) was introduced by Lowe in 1999 [8], and in 2006 the faster Speeded-

Up Robust Features (SURF) were made public by Hay et al. [9]. SURFs can be learned on a 

reference object, and then be used to detect the same object in a scene. For our experiment we 

create renderings of objects outside of their scene and train SURFs on this image. We than 

compare the matched SURFs between training object and reference image � to the matched 

SURFs between training object and test image �. The distortion impact on object detection � ����� 

is than 

 � �����  = �
� . (4) 

For all impact measures I it is I = 1 if segmentation, tracking and detection remains as good in the 

test image as in the reference, and I < 1 if the computer vision results are deteriorated in the test 

cases compared to the reference. 

4. IMAGE QUALITY – METRICS AND RESULTS 

Image quality is usually assessed using image statistics or methods modeling the human visual 

system. To predict the impact of image distortions on computer vision algorithms we calculate 

two algorithmic image quality metrics and compare to subjective quality scores as well. Mean 

Opinion Scores (!"�) are already available through subjective tests for the database described in 

Section 2. 
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For a reference image � and a test image � with dimensions # × % an average value expressing 

the overall statistical image error is the Mean Squared Error (!�&) calculated as 

 !�&��, �� = '
(∙* ∑ ∑ ,��-, .� − ��-, .�01*

234
(
534 . (5) 

In the Peak Signal to Noise Ratio (7�8�) the !�& is related to the amplitude of the original 

signal: 

 7�8���, �� = ��(9∈;<,=>?��(@∈;<,A>,��5,2�B0C
D�E . (6) 

 
Table 1. Table of Spearman Rank Correlations between Distortion Impact and Quality Measures. 

 

 

The 7�8� is still a very common metric for image quality analysis. It can be easily implemented 

and has a very low computational complexity, which is an important criterion for real-time 

applications. For image quality assessment 7�8� has been shown to relate poorly to subjective 

image quality findings [10]. Therefore metrics based on the human visual system have been 

developed, of which the Structural Similarity (���!) is a widely established one [11]. The 

Structural Similarity index (���!) compares three different image components: luminance, 

contrast and structure. Structural similarity ���! between a test image � and a reference image � 

is calculated as the weighted product of luminance F, contrast G and structure H: 

 ���!��, ��  =  F��, ��I · G��, ��K · H��, ��L (7) 

with 0 <  O, P, Q. 

A fourth measure for image quality which we analyze in the context of this work is the parameter 

which was used to distort the image. As the scene composition errors are assigned with error 

parameters for 3 dimensions, we map the three parameters to one error parameter 7R�R by 

calculating the absolute rotation angle, absolute size deviation and vector sum of transitions. 

We than calculate the Spearman rank correlation [12] between the distortion impact on 

segmentation ��������, tracking ������  and detection � �����  and the quality measures !"�, 

7�8�, ���! and 7R�R. Table 1 presents the correlation values for different image distortion 

classes. These distortion classes are noise (including white noise and Gaussian blur), compression 

artifacts (including JPEG and JPEG2000 compression artifacts), transformation errors (including 

object rotation, scaling and translation errors) and all (superclass of all previous classes). A bold 

font indicates the best correlation in each error class for one computer vision approach. 
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Table 1 indicates that 7�8� and ���! are good measures to predict the success of computer 

vision algorithms. Especially object tracking is very well correlated to ���! and 7�8�. Only for 

the noise error class the error parameter (if obtainable) is suggested as a success indicator, while 

���! has almost no correlation to the impact of noise on object detection. At the same time, 

when correlating the presented quality metrics 7�8�, ���! and 7R�R to the subjective !"�, it 

becomes clear that neither those presented metrics (nor any other metrics known to us) present 

suitable predictors for image distortions resulting from scene composition errors. This 

observation is confirmed by Caviedes at al. who note that subjective quality is more aesthetically-

oriented whereas computer vision may have different quality requirements [13]. 

 

Figure 3. Structure of our proposed SC-VQM. 

5. A RECIPROCAL RELATION 

In [14] we approach this problem of predicting subjective image quality and develop a Visual 

Quality Metric for Synthetic Content (SC-VQM) that employs computer vision algorithms to 

better predict subjective image quality in virtual worlds or augmented reality scenarios. The 

approach to achieve this goal is straight forward: We detect object changes and correct those 

before calculating a residual error. This idea is outlined in the block diagram in Figure 3 and 

described by the following six steps: 

1. Erroneous object detection: Distorted objects in a scene composition are detected 

2. Erroneous object matching: Objects in test image are matched with objects in reference 

image 

3. Object size calculation: The portion of the image affected by the distorted object is 

calculated 

4. Environment structure analysis: The environment of the distorted objects is analyzed for 

the amount of structures contained 

5. Object correction: The object in the test image is corrected according to the reference 

object, transformation parameters are recorded 

6. Residual error calculation: The residual error between corrected object and reference 

image is calculated 

7. Approximate !"� by detected parameters: All parameters from the previous analysis 

steps are combined in an error model to predict a !"� 

5.1. Implementation 

From a computer vision perspective the following three steps are most interesting: object 

detection, object matching and object correction. They closely relate to the above mentioned 

computer vision approaches of object segmentation, object detection and object tracking. To 

illustrate these three steps we employ a sample image, which is introduced in Figure 4. 

a) Erroneous Object Detection: A characteristic of erroneous objects is that image errors 

accumulate in the areas of these objects. We use this characteristic and in a first step compute the 
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average image error as the Mean Square Error. If objects are misplaced the image error in these 

areas is above the average image error, while the error is below in other areas. By filtering the 

error areas with a disk-shaped stencil, object areas can be distinguished. Two things are important 

to note: First, the object outline is only rough, but covers the whole area in which an object is 

misplaced with respect to the original. Second, the averaging disk size depends on image size and 

viewing conditions, to differentiate between noise and relevant objects. 

 

Figure 4. Example Image Set illustrating the implementation 

The result of this detection step is a mask with outlined areas. If multiple objects in an image are 

moved, all of these areas are marked and noted. For the sample images shown in Figure 4 the 

object detection mask is given in Figure 5. 

b) Erroneous Object Matching: To match objects between test and reference images there are two 

possible cases: a transformed object may be overlapping in reference and test image (only one 

erroneous region detected) or they may be spatially distinct (two erroneous regions). With the 

additional possibility to have several wrong objects in an image, we need to match each region 

with itself and with all other error regions. For region matching we employ Scale Invariant 

Features (SIFT) as proposed by Lowe [8]. For each area detected in the previous step we record 

the closest match between reference and test image. Figure 6 shows detected features between 

reference (top) and test image (bottom). The translation of the car between test and reference 

image can already clearly be seen by the feature lines (white) running slightly tilted between both 

images. 

c) Object Correction: Reallocating the distorted object from the test image to its original position 

in the reference image is an important task to calculate the visual disturbance of the picture 

irrespective of any transformations. Initially, we remove the misplaced object from the test image 

and fill the created hole with an inpainting algorithm. Second, we use the SIFT feature 

correspondences to get a rough registration of the object in the test image [8]. As SIFT feature 

matching leaves inaccuracies in the order of single pixels we employ a Levenberg-Marquardt 

least-square optimization with a Fourier-Mellin transform module to achieve an image 

registration with sub-pixel precision for exact object placement [15]. The order of applying the 

SIFT registration before the Fourier-Mellin transform based registration is advantageous, as the 

SIFT registration works robustly, but with a certain inaccuracy, while the Fourier-Mellin 

transform becomes unstable for images that are too different from each other but works with a 

high precision when images are closely aligned already. Our implemented concatenation is both 

robust and precise. Finally, the registered object is fitted onto the filled background image. Filled 

background image and test image after object registration are shown in Figure 7. Next to the 

registered image this step retrieves the scaling, translation and rotation values between reference 

and test object.  
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Figure 5. Mask and Environment of Erroneous Object 

 

Figure 6. SIFT Matching between test and reference image 

5.2. Metric Results and Relation to Computer Vision 

The SC-VQM analyzes scene objects for transformations, and employs detected transformation 

parameters as well as the object size and its environment structure for visual quality prediction. 

We have tested this metric on the ���S database, presented in Section 2. A comparison of 

correlations between the different metrics shows that the SC-VQM increases the correlation 

between MOS and predicted MOS for transformation errors by 28% compared to currently 

existing and established metrics. This result is visualized exemplary in Figure 8. While SSIM 

assigns a MOS score of “Fair” to the image (!"�
  =  3), our metric evaluated the test image 

close to “Excellent” (!"�
  =  4.6). The statistical error map (Figure 8.c) indicates why 

traditional metrics fail: a shift in image textures causes large parts of the image to be fully wrong, 

yet the human brain judges this error to be fairly unimportant. 

We therefore observe a reciprocal relation between Computer Vision Performance and Image 

Quality Metrics. Image Quality Metrics can be used to predict the performance of Computer 

Vision algorithms; Image Quality Metrics can therefore play an essential role in the design and 

development of Computer Vision algorithms. At the same time, ideas from Computer Vision are 

employed in Image Quality Metrics to increase the correlation between predicted quality and 

subjective evaluations. 
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Figure 7. Filled Background and Registered Object for Example Image Set. 

 
Figure 8. Perceived quality does not always correspond to statistics. 

6. CONCLUSION 

 
In the previous sections we have shown that there exists a reciprocal relationship between image 

quality and computer vision. As a basis for research connecting both domains we have developed 

an image database, SSID, which contains synthetic images with classical image distortions and 

scene composition errors. This database is subjectively evaluated and contains additional data 

such as depth and segmentation maps, as well as the raw data to produce further information. 

 

We have introduced three basic computer vision algorithms and four quality measures for visual 

information and have analyzed the image quality measures concerning their suitability for 

computer vision success prediction. Especially 7�8� and ���! were found to predict the impact 

of image distortions on computer vision algorithms well. 

 

On the other hand we have observed that image quality metrics fail for visual content produced 

with computer vision approaches. Therefore a novel visual quality metric, SC-VQM, was 

developed, which is especially designed to analyze synthetic contents in virtual worlds or 

augmented reality scenarios. This metric can increase the quality prediction by 28% compared to 

current standard quality metrics. 

 

Thus image quality metrics can be used to predict the success of computer vision approaches and 

computer vision can be employed to enhance the prediction capability of image quality metrics - a 

reciprocal relation. 
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