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ABSTRACT 

 

The problem of accurately predicting handling time for software defects is of great practical 

importance. However, it is difficult to suggest a practical generic algorithm for such estimates, 

due in part to the limited information available when opening a defect and the lack of a uniform 

standard for defect structure. We suggest an algorithm to address these challenges that is 

implementable over different defect management tools. Our algorithm uses machine learning 

regression techniques to predict the handling time of defects based on past behaviour of similar 

defects. The algorithm relies only on a minimal set of assumptions about the structure of the 

input data. We show how an implementation of this algorithm predicts defect handling time with 

promising accuracy results. 
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1. INTRODUCTION 
 

It is estimated that between 50% and 80% of the total cost of a software system is spent on fixing 

defects [1]. Therefore, the ability to accurately estimate the time and effort needed to repair a 

defect has a profound effect on the reliability, quality and planning of products [2]. There are two 

methods commonly used to estimate the time needed to fix a defect, the first is manual analysis 

by a developer and the second is a simple averaging over previously resolved defects. However, 

while the first method does not scale well for a large number of defects and is subjective, the 

second method is inaccurate due to over-simplification. 

 

Application Lifecycle Management (ALM) tools are used to manage the lifecycle of application 

development. Our algorithm relies on a minimal number of implementation details specific to any 

tool and therefore has general relevance. Our implementation is based on the Hewlett Packard 

Enterprise (HPE) ALM tool. We tested the algorithm with projects from different verticals to 

verify its broad applicability. 

 

One of the advantages of our implementation is that it does not assume a standard data model, but 

is able to handle the cases where the defect fields available vary between different data sets. We 
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provide experimental evidence of the significance of including non-standard fields as input 

features for the learning algorithm. 

 

Our approach supposes that we can learn from historical data on defects that have similar 

characteristics to a new defect and use this to make predictions on the defect handling time that 

are more accurate than many comparative approaches. We found that in real life, the available 

data was often of poor quality or incomplete, and so in implementing our solution we encountered 

a number of challenges, which we discuss in this paper. 

 
Figure 1: Training process 

 

Our approach is based on a supervised regression machine learning algorithm in which the output 

is the predicted handling time for defects. The training phase is summarized in Figure 1. It takes 

as its input (1) a training set of handled defects together with their fields and (2) the history of 

status changes from these defects, and outputs a learned model. The prediction phase is 

summarized in Figure 2. It takes as its input (1) the model outputted from the training phase and 

(2) a set of unhandled defects together with their fields, and outputs the predicted handling time. 

 

2. RELATED WORK 

 
There are many practical methods of defect handling time estimation used in software 

engineering, as described in [2]. 

 

Defect fix effort estimation using neural networks was reported in [3]. The data for this study was 

extracted from the NASA IV&V Facility Metrics Data Program (MDP) data repository. Their 

approach is based on clustering the defects using a Kohonen network. Then the known values of 

defects fix effort were assigned to the found clusters. Given an unseen sample, the fix time is 

estimated based on the probability distribution of the different clusters. 

 

A text similarity approach for estimating defect resolution time was described in [4]. The title and 

description of the defects were used to measure similarity between defects using the "Lucene" 
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engine developed by the Apache foundation [5]. In this study, k Nearest Neighbours (k-NN) was 

used to find the closest k defects already resolved to a given new defect, and the mean was taken 

as the final estimation. 

 

A work done by Rattiken and Kijsanayothin in [6] investigated several classification algorithms 

for solving the defect repair time estimation problem. The data set, taken from defect reports 

during release of a medical record system, contained 1460 defects. They investigated seven 

representative classification variants of the following algorithm families: Decision Tree Learner, 

Naive Bayes Classifier, Neural Networks (NN), kernel-based Support Vector Machine (SVM), 

Decision Table, and k-NN. 

 

 
Figure 2: Prediction process 

 

Giger et al. presented a method for predicting the handling time of a new defect using decision 

trees [7]. The defects in the sample set were classified into two categories: fast and slow defect 

fixes, based on the median defect fix time of the corresponding project. The data set included 6 

open source projects, each containing between 3,500 and 13,500 defects spanning periods 

between 6 and 11 years. 

 

In a recent work by Zhang et al. in [8], the authors suggested a k-NN classifier for predicting fast 

or slow defect fixes. A bug was represented as a vector of standard defect attributes and a 

predefined bag of words extracted from the summary field. They used defect datasets collected 

from three CA Technologies projects. The results reported in this work is based on a normalized 

time unit, where 1 unit equals the median time needed to fix a defect. 

 

3. TRAINING 
 

3.1. Data Extraction and Handling Time Calculation 
 

In the first step in the training process, we first extract the defect records, including all their fields 

and history from the project database. The fields available vary from project to project. Typical 
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fields include Summary, Description, Assignee, Status, and Severity. However, users generally 

customize their projects to include user-defined fields. Excluding such fields from the analysis 

might mean missing valuable features. For example, suppose there is a field such as Estimated 

Effort, with possible values Low, Medium and High. It seems reasonable that a correlation exists 

between this field and the actual handling time. Our system does not rely on knowing in advance 

which fields exist and is able to learn from any number of fields, of various types.We use the 

history of the Status field to calculate the total time effort invested in fixing a handled defect, 

refered to as Handling Time. Possible defect statuses vary between projects but generally include 

New, Open, Fixed, and Closed. For the purposes of our research we define our target value as the 

total number of days spent in status Open. For the training set, we consider only defects that have 

reached the end of their lifecycle, i.e. are in state Closed. 

 

In Table 1 we see general information about the projects used in this study. The data sets used for 

analysis were snapshots of customers' databases. 

 
Table 1: Summary of the projects in the data set 

 
 

3.2. Sample Filtering 
 

We aim to provide managers with a tool to enable better estimation of the time needed to handle 

defects. Therefore we cannot allow the prediction system to estimate a practically unreasonable 

time for fixing a defect and we consider it as sampling error. Such a long fixing time can be 

caused by the fact that in some cases users do not update their current status on working on a 

defect, and may mark a defect as Open, and after a while switch to another task without updating 

the defect status. 

 

Although other related work in the field allowed long fixing periods (e.g. more than a month) [7], 

we observed that it is rare that a defect takes more than 30 days to be fixed and so such defects 

were filtered out. We encountered defects that remained in state Open for more than a year. 

Figure 3 shows the accumulative distribution of the defect handling time versus their percentage 

in the data set. If we allow defects with very large fixing time, the algorithm might find patterns 

characterizing defects that were "forgotten" in Open state rather than identifying patterns that 

affect real-life handling time. 

 

In addition, we employ standard extreme value analysis to determine the statistical tails of the 

underlying distribution using the z-scoring on the handling time field [9]. Samples that are not in 

the interval [µ-3σ, µ+3σ] are filtered out, where µ is the mean and σ is the standard deviation of 

all the defects in the data set. 
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Figure 3: Percentage of defects handled by days 

 

3.3. Feature Selection 
 

Different fields in a data set may have different population rates, where the population rate is the 

percentage of samples containing a value in a given field. This might be due to the fact that not all 

fields are required for each defect, or that a field was added to the project at a later stage, and 

therefore defects opened prior to this field's addition do not have values for the field. To improve 

the data set stability and the quality of the model, we remove fields with very small population 

rate (less than 2%). To avoid data leakage, the system automatically filters out attributes that are 

usually unavailable on defect submission, by comparing the population rate of the attributes in 

handled and unresolved defects. We also remove non-relevant internal system fields. 

 

3.4. Feature Transformation 

 
A defect is represented by a set of data fields of both qualitative and quantitative data types. 

However, most machine learning algorithms employ quantitative models in which all variables 

must have continuous or discrete numerical values. Therefore, certain transformations must 

sometimes be performed on the given fields before they can be used as features to the learning 

algorithm. 

 

Numeric fields are generally used as is, directly as features. However, in special cases they are 

treated as categorical features, as described later in this section. 

 

Categorical fields are transformed using a "one-hot" encoding scheme; a vector of features is 

assigned to each such field - each feature corresponding to a possible value of that field. For each 

defect, the feature corresponding to the actual value of the field in that particular defect is 

assigned the value 1, whereas the rest of the features are given the value 0. We identify a 

categorical field as a string or number field whose number of distinct values is sufficiently lower 

than the number of defects with this field populated. To avoid there being too many features ("the 

curse of dimensionality" [10]) we group the values with low frequencies together under a single 

value Other, which also captures possible unprecedented values during the prediction process. 
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String fields whose domain of values is very large, may correspond to free-text fields such as 

Summary and Description. Although these fields may contain important information, they require 

additional effort to be appropriately mined and so were discarded in the current implementation. 

 

Date and time fields are projected into time/date cycles such as hour of the week, used to capture 

the presumed correlation between the day of week for some fields and the handling time. In order 

to represent this feature radially, we projected each date onto a unit-circle representing the 

corresponding hour of the week h and took cos(h) and sign(sin(h)), where sign(.) is the signum 

function, as a new pair of independent variables. 

 

Scarcity of data is a common issue when analysing real-life project defects. Therefore, before 

starting the training phase, imputation is applied to fill missing values. Empty cells in categorical 

features are simply treated as another category, as they may have a particular meaning in many 

cases. However, for numeric features, we filled up empty cells with the most frequent value. In 

order to avoid data leakage, the imputation is performed just before training the model (after the 

partitioning to test and train). Replacing empty cells with the mean value of the feature or the 

median value are two other common numerical imputation schemes which were considered but 

were empirically found to yield inferior scores in our setting. 

 

3.5. Model Training 

 
Unlike in classification, in which the goal is to identify to which class an unlabelled observation 

belongs, regression algorithms, given a predictor variable x, and continuous response variable y, 

try to understand the relationship between x and y, and consequently enable predicting the value 

of y for a new value of x. The basic idea underlying the Regression Tree learning algorithm is 

similar to the idea on which the commonly used Decision Tree algorithm is based, but slightly 

altered to adapt the non-discrete nature of the target field. Random Forests [11] are an ensemble 

learning method for both classification and regression problems. They operate by building a 

multitude of decision trees and returning the class that is voted by the majority of the trees in 

classification, or the mean of the individual trees in regression [10]. Random forests are much 

less prone to overfitting to their training set compared to decision trees, and so we chose to use 

them as our machine learning algorithm. 

 

We trained a random forest regression in Python using 80 estimators (i.e. individual decision 

trees), with a limitation on the minimum number of samples required to split internal node set to 

2, and minimum number of samples in a newly created leaf set to 6. The default values were used 

for the other model parameters. These parameters are constant for all data sets in this work and 

they were empirically tuned. 

 

4. PREDICTION 
 

While estimating the handling time of a single defect is important, in reality managers are usually 

interested in making a prediction based on a set of defects (such as the content for a future 

release) to be handled by a group of developers. Therefore, we have built a system that provides a 

completion time estimation for any given set of unhandled defects. 

 

As shown in Figure 4, the system presents a graph showing the resulting cumulative distribution 

in a report which displays the confidence of the defects being closed by any selected date. Based 
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on the graph, we let the user calculate the release end date given confidence level and vice versa. 

We also let the user set the number of available developers. 

 

Figure 2 describes the flow for predicting the completion time for a set of defects. Each defect in 

the given set of unhandled defects passes through the same preprocessing flow as in the learning 

process, apart from the handling time calculation stage. Then, using the model, the system returns 

an estimation of the handling time of the given defect, as well as a prediction confidence 

calculated based on the variance between the answers of the individual regression trees. 

 

To automatically calculate the total time it takes to complete a set of defects by several 

developers, one would ideally use the optimal scheduling which minimizes the makespan (i.e. the 

total length of the schedule). However, the problem of finding the optimal makespan in this setup, 

better known as the Minimum Makespan Scheduling on Identical Machines, is known to be NP-

Hard [12]. We employ a polynomial-time approximation scheme (PTAS) called List Scheduling, 

utilizing the Longest Processing Time rule (LPT). We start by sorting the defects by non-

increasing processing time estimation and then iteratively assign the next defect in the list to a 

developer with current smallest load. 

 

An approximation algorithm for a minimization problem is said to have a performance guarantee 

p, if it always delivers a solution with objective function value at most p times the optimum 

value. A tight bound on the performance guarantee of any PTAS for this problem in the 

deterministic case, was proved by Kawaguchi and Kyan, to be [13]. Graham proved a 

relatively satisfying performance guarantee of 4/3 for LPT [14]. 

 

 
Figure 4: A screenshot of the actual system report. 

 

After computing the scheduling scheme, we end up with a list of handling times corresponding to 

developers. The desired makespan is the maximum of these times. 

 

Accounting for the codependency between defects is infeasible since it requires quantification of 

factors such as developers' expertise levels and current availability. It is also subject to significant 

variance even within a given project. In practice, we observed that treating defects as independent 

for the sake of this calculation yields very reasonable estimates. By the assumption that defects 
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are independent, we may treat the completion times as pairwise independent, which yields the 

Cumulative Distribution Function (CDF) F(t). This value is the probability that the set of defects 

will be completed until time t. 

 

 
Where Ci is the completion time for developer i. Ci's distribution is not obvious. It is the sum of 

several independent random variables - a variable whose Probability Density Function (PDF) can 

be generally computed by convoluting the PDFs of its constituents. However, this requires 

knowing the distribution of each defect's handling time. 

 

Zhang et al [8] found that the distributions best describing defect handling times are skewed 

distributions, such as the Weibull and Lognormal distributions. Therefore, we at first used to take 

the mean and variance values outputted by the predictor, fit a Weibull distribution corresponding 

to these values, and then apply convolution to achieve the required measures. Our results showed 

that, in most cases, the distributions of single defects highly resembled the Normal distribution. 

Moreover, convoluting their PDFs proved to converge very quickly to the Normal distribution, as 

the Central Limit Theorem guarantees. For these reasons, and to allow fast computation, we 

simplified the aggregation such that each variable was treated as a Normal random variable. The 

sum of such variables is also normally distributed and can be easily calculated by a closed 

formula. 

 

Given F(t), the expected value and variance of the total handling time can be derived using 

standard techniques. 

 

5. EXPERIMENTAL METHODOLOGY 

 
To facilitate comparison with related work, which mostly discuss handling time for individual 

defects, and due to the more accurate historical information available for such cases, we focused 

on the prediction accuracy for handling a single defect. To evaluate the quality of our predictive 

model, we use the six customer projects introduced in Table 1. After extracting a data set of 

defects and applying the preprocessing described in Section , we randomly partition the sample 

set into learning and testing sets, containing 80% and 20% of the data respectively. 

 

The total number of defects in the sample sets of each project is shown in Table 2. The training 

set is used to construct the model. We use the standard accuracy estimation method, n-fold cross-

validation [15] to avoid overfitting. 

 

We employ several performance metrics to evaluate our algorithm. First, we use the Coefficient of 

Determination (denoted R
2
) which is a key indicator of regression analysis. Given a set of 

observations with average value  in which each item  corresponds to a prediction 

 R
2
 is defined as follows:  
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An R
2
 of 1 indicates that the prediction perfectly fits the data, while R

2
 = 0 indicates that the 

model performs as well as the naive predictor based on the mean value of the sample set. 

Equation 2 can yield negative values for R
2
 when fitting a non-linear model, in cases when the 

mean of the data provides a better prediction than the model. 

 

Second, we employ the Root Mean Square Error (RMSE), an accuracy metric measuring how 

well the proposed model fits the data by averaging the distance between the values predicted by a 

model and the ones actually observed. Last, we utilize a metric proposed in [4], calculating the 

percentage of predictions that lie within  of the actual value  Let  denote the absolute 

difference between the predicted value  and the actual value  

 

Pred(x) is then defined as follows: 

 
 

6. EXPERIMENTAL RESULTS 

 
We performed the following experiments according to the methodology described above on each 

project independently. The target field, namely the handling time, is calculated in days. In Table 

2, we present a general overview of the system performance on the six projects in our data set. 

For each project the sample size (S. Size) and several accuracy metrics are given. We see that in 

Project 2 a high value of R2 was achieved, and in Projects 3 and 6, our implementation cut the 

mean square error by half, compared to the naive algorithm. Comparing our results to the work 

done in [4], our approach achieved better results, in both Pred(25) and Pred(50), in all of the 

projects in the data set. In the corresponding work less than 30% of the predictions lie within 50% 

range of the actual effort on average, whereas our results show Pred(50) = 0:42, a 40% 

improvement. We see a similar improvement in Pred(25). It is important to mention that the data 

sample sets' sizes in this study are significantly larger than the projects used in [4]. These results 

demonstrate that fields other than the Summary and Description should be considered when 

predicting how long it will take to fix a defect. 

 
Table 2: Summary of performance results 

 

 
 

In Figure 5 we see the learning curve of the projects in our data set. In this particular graph each 

experiment was conducted three times, i.e. each point represents three experiments done with a 

given project and a given sample set size, in addition to the cross-validation done in each 

experiment. We can see that the results are stable when the data set contains more than 1000 
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defects. Projects 1, 2 and 3 show high values of R
2
 for data sets containing more than 500 defects. 

The differences in results between the projects should be further investigated. 

 

 
Figure 5: Learning Curve - R

2
 as a function of the sample set size 

 

In Figure 6 we compared five sets of data fields for each of the projects used in our experiments. 

The first set, Base Fields, is a set comprised of the following basic fields: Detector, Assignee, 

Priority, Severity and Project Name. The next couple of field-sets were based upon the base set 

with additional fields specified in the legend of Figure 6; the fourth set included all standard 

fields, common between all projects; and the last set contained all fields, including user-defined 

fields, which vary significantly between different projects. As shown in Figure 6, R
2
 scores 

increased in correspondence with increases in the number of fields available for learning, and 

particularly when the system was allowed to use user-defined fields. It is important to note that 

any field may or may not be discarded by the algorithm, either in the learning phase itself or 

during pre-processing. 

 

While analyzing the results and comparing the different projects, we also examined the feature 

importances (i.e. the weight of each feature computed by the model). This examination showed 

that user-defined fields played a crucial role in determining the amount of time to fix a defect. In 

all projects, at least one such field was ranked as one of the three leading features. We also found 

that the date a defect last entered an Open state is significant for the prediction. This result 

supports the assumption mentioned briefly in Section , where we explained how the time a defect 

was opened or detected may be important. 

 

Examining feature importances also showed that fields which are intuitively thought as 

significant in handling time prediction of defects, are not necessarily so. Fields such as Severity, 

Priority, Assignee and Detector were not found to be noticeably important in most projects. These 

results support those described in [16]. 
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Figure 6: R

2
 score as a function of the fields used for learning features 

 

To accurately compare our results to the work done in [7], we ran an experiment in which the 

target field was calculated in hours and the defects were categorized into Fast and Slow defects 

using the median of fixing time. Similarly, in this experiment we calculated the median for each 

project and partitioned the defects into two classes, we used the measures described in [7], and 

used a Random Forest Classifier with parameters close to those used for our regresssor (described 

in Section 1). The results presented in Table 3 are the average over all projects in our dataset, and 

the average results over all projects presented in the compared work when the initial defect data 

was used. Their data set contained six open source projects, with a similar number of defects to 

the current paper. Our results show an improvement over the reported results in the compared 

study. 

 

Table 3: Performance comparison 

 

 
 

7. VALIDITY 
 

In this section we discuss the validity of our work by addressing the threats for validity of 

software engineering research proposed by Yin in [17]. 

 

Construct Validity. Our construct validity threats are mainly due to inaccuracies in calculating 

handling times, based on information stored in defect tracking systems. This is due to the "human 

factor": developers are expected to update the systems, often manually, to reflect the real work 

process, and have different expertise levels and variable work availability and productivity. 

 

Internal Validity. Methods such as cross-validation were used to make sure the results are as 

accurate as possible. In cases where a phenomenon had alternative explanations (e.g. comparison 
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between results), we tried to incorporate the uncertainties to explain the variability and we are not 

aware of any other factors that could bias the results. 

 

External Validity. Six different projects from different companies and several industries were 

examined in this study. Our approach can be applied to almost any data set of defects, with a wide 

range of diversity. However, a possible threat is that the data sets in this study were all taken from 

the same implementation of ALM. Further studies on different systems are desirable to verify our 

findings. 

 

Reliability Validity. The dataset used in the work is commercial so cannot be publicly accessible 

for the moment and therefore this work cannot be replicated by other researchers using the exact 

dataset. However, we made a significant effort to provide all relevant implementation details. 

 

8. SUMMARY 

 
In this paper, we presented a novel approach for prediction of software defect handling time by 

applying data mining techniques on historical defects. We designed and implemented a generic 

system that extracts defect information, applies preprocessing, and uses a random forest 

regression algorithm to train a prediction model. We applied our method on six projects of 

different customers from different industries, with promising results. Our system was designed to 

handle flaws in the data sets common in real-life scenarios, such as missing and noisy data. 

 

9. FUTURE WORK 
 

We currently do not sufficiently exploit the content of the free-text fields. We would like to use 

text mining techniques to extract key terms that affect the defect handling time. 

 

We are also considering an expanded approach based on state transition models, in which we 

calculate the probability of a defect transitioning between any given pair of states during a certain 

time period. A similar idea was described in [18] but we want to expand this idea by computing a 

separate model for each defect, based on its fields, rather than assuming that all defects behave 

identically. This could be used to make a large number of predictions about defect life-cycle, for 

example, to predict how many defects will be reopened. Combining this with methods used for 

defect injection rates, such as those surveyed in [19], may provide a more realistic prediction for 

the situation in which new defects are detected within the project time-frame. 

 

Our algorithm can be easily generalized to other entities representing work to be done, such as 

product requirements and production incidents, and we would like to evaluate its accuracy in 

these cases. We plan to also generalize our system to extract data from different defect reporting 

systems. 

 

To make our data publicly available to be used by related research, we plan to obfuscate our data 

set by removing any identifiable or private information and publish it. 
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