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ABSTRACT 

 
With the generalization of mobile communication systems, solicitations of all kinds in the form 

of messages and emails are received by users with increasing proportion of malicious ones. 

They are customized to pass anti-spam filters and ask the person to click or to open the joined 

dangerous attachment. Current filters are very inefficient against spear phishing emails. It is 

proposed to improve the existing filters by taking advantage of user own analysis and feedback 

to detect all kinds of phishing emails. The method rests upon an interface displaying different 

warnings to receivers. Analysis shows that users trust their first impression and are often lead 

to ignore warnings flagged by proposed new interactive system. 
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1.  INTRODUCTION 

 
The tremendous increase of information traffic on the various available supports has correlatively 

augmented considerably the flow of useless and even dangerous information, up to the point that, 

overall, the value of global information content is proportionally decreasing. Mail credibility 

becomes difficult to discern because of growing useless “information” polluting inboxes. Much 

worse, there is in parallel a trend difficult to stop, where more and more emails are targeted by 

computer attacks [1] for stealing information and/or ransoming them, damaging infrastructure or 

creating botnets. Despite constant surveillance from dedicated watching sites and accelerated up-

to-date production of protecting software against viruses and malware, these attacks are now 

adaptively developed according to the target, the attacker and its final goal [2].  

 

Simplest case corresponds to Phishing with a good-looking email asking user to click or reply 

[3,4]. Spear-Phishing email is customized to pass anti-spam filters and targeted to a small number 

of users. Pharming is a Phishing improved version where targeted legitimate site is duplicated in 

user browser address bar by poisoning the victim DNS server and remapping the target website 

domain onto pharming site IP address. Least visible and most dangerous Advanced Persistent 

Threat (APT) attacks are used to extract sensitive data and to create backdoors in user system for 

later access.  
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Despite good anti-techniques such as content-based [5-7] and behavior-based [8-11] ones, the 

attacks are still a serious problem because phishes continually change their ways to defeat the 

anti-phishing techniques. Also, most existing emails filtering approaches are static easy to defeat 

by modifying emails content and link strings. To counter Phishing attacks, existing approaches 

are mostly based on technical tools [1218], or sometimes in combination with a human sensor 

[19-20]. Today filters inefficiency against spear-phishing emails constitute a weak point of 

entrance into supposedly “protected” private emails. In the following the possibility to improve 

the situation is discussed by implying user participation with adequate training to recognize 

attacks more easily.   

 

Technical approaches [21-24] attempt to automatically identify fraudulent messages and either 

discard them immediately or warn the users of their potentially harmful nature. Machine Learning 

is a good example of technical approach used as a solution to counter phishing attacks [5,2527]. 

Test of different algorithms to determine which one has best efficiency gives a value around 90% 

for all of them [7,28]. However, this is an inappropriate rate given the total volume of phishing 

attacks. Present approach is different as it combines a technical tool with human interaction, with 

the intention to determine how much more efficient is user implication for spear phishing 

detection. Some solutions combining technical tool and human sensor have been tried. For 

instance, when addon browser BAYESHIELD [29] detects a potential phishing website, it 

displays a blocking pop-up asking users to use tool Analyzer part in order to detect whether the 

website is legitimate or not. The software also asks users different questions organized in three 

categories: a) easy to understand (no complicated terms), b) easy to answer (the questions do not 

strain their cognitive load), c) educative (users will learn to detect phishing without the help of 

any tool). The results are interesting as the tool helps users to distinguish legitimate websites from 

fake ones. Their feedback is very positive as they appreciated the tool support in their decision.  

 

Spear-phishing attacks can be executed on any social media platform. The content of sent 

messages is usually designed to be interesting for the recipients [3]: it can be based on their 

hobbies, their personal information, profession, ... Most reviewed studies about phishing count the 

number of users who filled a form with personal information, credentials or banking information 

to distinguish users falling into the phishing from users recognizing it. This approach is not 

pertinent here. 

 

Spear-Phishing containing an APT can infect a system by just clicking on a link or on the 

attachment. The exploitation is triggered immediately after the user interaction, so it is very 

important that the user can detect a Spear-Phishing email and do not click on the links inside nor 

on the attachments. Moreover, if detection rules between Phishing and SpearPhishing differ, they 

share a common basis but Spear-Phishing is designed to bypass anti-phishing systems and to be 

very discreet as it is the first step of a big and elaborated attack [4]. 

 

The solution proposed in the following is based on the same principle as BAYESHIELD, with the 

difference that instead of focusing on website detection, attention is focused on email spear-

phishing detection and the tool is tested in real conditions. 
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2. SYSTEM DESIGN 
 

2.1. The Add-On 
 

Here a THUNDERBIRD (an email application) add-on is developed reacting to a potential threat 

identification. The addon has been tested on THUNDERBIRD 45.0.x. When it occurs, the 

receiver must be warned to think about the danger it can be exposed to. For the add-on, a window 

appears with questions about elements of the received email, like attachment, link, failure in 

sender identification. 

 

The asked questions are easy to understand. If the email contains a link, the user is warned about 

its existence. He is asked if the link really redirect towards what it announced it would do and 

how he can check it. In case the email contains some attachment, the user is asked if he expected 

to receive a file and is warned about it. The asked questions are easy to understand. If the email 

contains a link, the user is warned about its existence. He is asked if the link really redirect 

towards what it announced it would do and how he can check it. In case the email contains some 

attachment, the user is asked if he expected to receive a file and is warned about it. Finally, in 

email header, the security SPF Test can assert whether the domain name is real or usurped. If the 

SPF Fail is not succeeding, which means that it is potentially usurped or is not just recognized, 

the user is warned that the email may be potentially malicious. 

 

Attachment is detected by looking at attachment part into email header. To detect the link, one 

just search on the raw text, without html tags, the string “http” or “www”. Then the user is 

supposed to make the appropriate decision. There are different possibilities. First, the email is 

suspicious and the user discovers it. He reports it as a spam in order to improve the Bayesian 

filter which decides if an email is dangerous or not. Second, and it is why it is chosen to make a 

send-email window appear for warning the IT department about the potential danger and letting it 

take appropriate measures. If the user, despite the warning, still decides to trust the email, it is at 

his own risk and the warning existence does not change the result. Unfortunately, a legitimate 

email can make the add-on react. Then, the user can encounter a problem. If the user uses the 

program for too long, his attention can be reduced. In this case, the user will just throw the emails 

to spam, like if they were malicious ones. This is probably the most dangerous habit the user can 

have. But if he keeps his attention focused and takes the time to verify if the emails are legitimate, 

everything is good. 

 

2.2. Mailing 

For the mailings, SEES software and POSTFIX on a Kali Linux VIRTUALBOX have been used. 

POSTFIX has been configured to use one of the domains we bought. 

 

SEES software allows individually sending emails the sender email address, the sender name and 

the other usual mailing fields of which can be directly set. The software does not allow any 

individual customization in the body. For logistic reasons, the number of hits per link per 

population has also been counted. In the experiment performed on site at ECE Paris School of 

Engineering, the sent emails are not considered as spams by the school webmail (office 365) or 

by any other email client. 
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3. USER-STUDY METHODOLOGY  

 
The goals of the study are: 

 

1) to compare the click-rate on Phishing and Spear-Phishing mailings between a user group 

supposedly sensitized to security issues and a nonsensitized one. 

 

2) to compare the click-rate with and without proposed tool. 

 

3) to determine if the tool has helped the users in detecting the junk emails they received. 

 

4) to determine if and how many users identify malicious email. 

 

The developed add-on asks questions to the users on some emails that the email server does not 

know how to classify: i.e. it is not sure whether the email is legitimate or not. 

 

Thirty participants have been recruited as the testing population to install and use proposed add-

on. They were told that the tool was in use to prove that users should be included in junk or 

phishing detection. Questions have been asked to them on potential dubious points that should 

help them determine if those emails are illegitimate, in exchange to a small reward for their 

participation. The control population has been divided into three main groups. The first group 

counts 86 users who belong to Engineering School. Most of them have basic knowledge on 

computer security. The second and third groups belong to Business and Management Schools. 

These users are supposedly not sensitized to computer security. No group was aware of the study. 

All participants are under 25 years old and undergraduates.  

 

A total of four phishing or spear-phishing emails have been sent so as to have a consistent set of 

data. The goal of these emails was to have the participants click on a link provided in it. The 

number of clicks on the links are collected by using a bit.ly account. Each time different links 

have been used by email: one by school for the control population and one for the testers. 

 

For phases 1 and 2, to make emails look more credible, a domain name similar to chosen “victim” 

organization has been taken, and an email has been sent from a non-existing person in the 

company (support@example.com for instance). To make everything look normal, a failure in 

SMTP protocol, allowing to send an email from any fake or real sender, has been exploited. 

Protections against this failure exist but must be implemented by the domain you spoof. For legal 

reasons, permission has been asked to domain’s owner or used nonexistent one for the other 

phases. 

 

Phishing emails differ according to the school for legal reasons. A validation has been asked for 

each email sent with an usurped identity. Four tests have been conducted corresponding to 

different users’ behavioral aspects. 

 

3.1 Test Campaign 1 

 
An email has been sent to all (students) populations informing them that their report is available 

on the online grade platform. Some of the schools do not use such system but it was anticipated 

that users would click anyway without checking for basic signs of phishing (wrong URL, 



Computer Science & Information Technology (CS & IT)                                 105 

 

unknown sender, breaking the habit) because grades are a highly sensitive subject in this period 

and many students fear failing their courses. The email was sent from an unknown sender (who 

sounds like a real staff working there) with a fake email address. 

 

3.2 Test Campaign 2 

 
Here, the email differs depending on the targeted school. For the first one, it was an email about a 

change in their timetable. For the other ones, it was an email informing the user that a tutorial 

about the use of the printers were available. It was sent from a legitimate address.  

 

3.3 Test Campaign 3 

 
For third phase, a commercial ad was sent by email. Since the first semester just ended, the 

“shop” was offering 20% off the alcohol. The email invited users to click on a link to discover the 

shops participating to the operation. The clues for the users to determine that it was not legitimate 

were: the obfuscated link, no possibility to unsubscribe the newsletter (it is mandatory in the EU), 

the lack of any shop with this name and finally, that they did not subscribe to any information of 

this kind. 

 

3.4 Test Campaign 4 

 

In last test, an email was sent informing the students they had submitted their work on the school 

moodle. Of course, they did not. The course did not even exist. The sender address was unrelated 

to the school but the expedient name sounds legitimate, i.e. its name is “Name of the school” and 

its address this@isaspam.org . This phase allows verify what the user checks when they receive 

shady emails. 

 

4. RESULTS 
 

4.1 Global Results 

 
The population sizes are: 86 for School 1 (S1- Engineering School), 60 for School 2 (S2- 

Business and Management School) and 220 for School 3 (S3- Business and Management School). 

To analyze the results, the following “global click response” (GCR) coefficient γ given by (1) will 

be used  

 

γ = 10
2
 χ.ν                                                                                 (1) 

 

where χ = {Click Number/Number of Clicking Persons} and ν = {Number of Clicking 

Persons/Tested Population Number}. This coefficient is grouping two different elements {the 

number of clickers in a population, the number of clicks per clicking person} together, depending 

respectively on tested population number and individual response of tested groups. Even if χ and 

ν are generally independently required for specific study, GCR γ is for present discussion 

representative of tested population response. The fact that γ > 10
2
 because χ >1 is here useful as it 

enhances the difference between the different tested groups. The most successful tests are first 

and last ones. The first test corresponds to the most advanced attack and the hardest to detect. The 

last one was testing user habits and awareness level. There is no data for S2 because authorization 
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was not obtained from school administration. S1 students clicked the less on proposed links. 

During first test campaign, a huge spike for S2 students reaches around 360%, see Fig. 1.  

 

 
Figure 1: GCR λ per Population per Campaign Cj 

 

S3 students clicked about 170% and S1 students around 110%. Testers performed worse, about 

130%. For tests 2 and 3, results are quite similar for every population. For test 2, the average click 

rate is around 15% and for test 3 about 5%, except for S2, with a click rate of 14%. None of the 

testers clicked on this mail. For the last test campaign, the click rate is about 44% for S1, 50% for 

S3 and 21% for volunteer population.  

 

Relevance of proposed tool can be analyzed on Fig. 2 It compares the ratio clicks/control 

population with the clicks/test population. It brings to light that the curves are quite similar and 

follow the same tendencies. One can distinguish for test campaign 4 a small difference. Control 

population clicked around 40% whereas testers did 20%. 

 

 
Figure 2: Evolution of GCR λ for Control and Recruited Population. 

 

4.2 Results for Test Campaigns 1 and 4 

 
As campaigns 2 and 3 had a very low click rate, the daily analysis was dismissed. The 

percentages presented in this section are calculated as: 
��������	
�	�
������

����
��������	
�	�
∗ 100               (2) 

 

4.2.1 First Campaign 

 
During this campaign, the main objective was to create an email the users would crave to read 

and click on associated link. As it was the end of the semester, the created email was announcing 
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that the results were available on the grade platform. A particular attention has been taken to 

every detail, name, template, etc. The fake email was based on a similar email sent by the 

administration of the schools two years before.  

 

 
 

Figure 3: First Test GCR λ per Day. 

There was no similar email sent since then. Fig. 3 shows that S3 massively click on the link 

(around 160%) the first day, but not after. About 70% of S1 clicks are the first day. There is about 

10% of S1 clicks on day 2, 3 and 4. S2 and tester clicks are around 45% the first day and stabilize 

for S2 the second day and quickly drop to zero during day 3 and 4. For testers, click percentage 

stabilizes around 15% until day 6 and then drops to around 3%. 

 

4.2.2 Fourth Campaign 
 

For last test, a new phishing email was sent but this time, with more intriguing features. The 

designed was basic and the sender address had nothing to do with something remotely legitimate. 

If the user read the email address, he directly understands the email is a setup. The goal was to 

determine if users check for basic signs of spam in an email. 

 

Fig. 4 shows that, S1 click on the link the first day but not after. About 80% of tester clicks are 

the first day. There is about 20% tester clicks on day 2 and none after. S3’s clicks are about 60% 

the first day, it quickly stabilizes around 15% on day 2 and 3. It drops to roughly 10% on day 4. 

 

 
Figure 4: Fourth Test GCR λ per Day 
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5. ANALYSIS 
 

To validate them, survey covering all previously sent emails was sent to all participants asking 

why they trusted the emails or not, or why they thought it was legitimate.  

 

1)- It cannot be as certain from reported results that there is no statistically convincing data 

confirming the improvement of phishing detection with proposed tool. 

 

2)- Many users rely on the pair {sender name/subject} to determine whether the email they 

received is legitimate or not. This is further reinforced by the fourth test phase results. The sender 

email address was off. It did not even look like something legitimate. However, one still observed 

a 40~50% click rate on the links. To further check this hypothesis, the email sent was about a 

homework the students submitted online, but in a subject outside their cursus, after it was checked 

they did not submit a homework in any subject at all recently. This result can be explained by the 

fact that whether on a PC or a mobile phone, it is the two first information available. Furthermore, 

on a mobile, they are generally the only one available, the email address being usually hidden. 

3)- There is no real discrepancy between supposedly sensitized and non-sensitized populations 

ones. They all clicked in similar proportions during the different test campaigns (difference <5%). 

It can be seen that test population did not click on the links at all during third test whereas the 

other populations had non-null click rate. 

 

In first test campaign, the click/population number ratio is above 1. The result is explained by 

users’ frustration not to get the promised information and clicking again in believing it was an 

error. The link redirected them to the school extranet that they, subconsciously, consider as safe 

and legitimate. Others clicked in the following days thinking the information would be posted 

later. It is possible that the greater is the ratio, the more difficulty it indicates for the “victims” to 

spot that it was a spear-phishing. 

 

4)-The high score of first test campaign comes from arousal of students’ curiosity and from their 

need for reassurance against a possible catch-up exam. Therefore, when seeing the email, they 

thought it was legitimate and did not further check for a phishing. Even those with the add-on did 

not pay attention to the alert. 

 

The spear-phishing was a high quality one: the message, subject, sending timing and sender were 

conceived to catch the receiver. A technical fault was exploited to use the domain name of their 

school and be shown as legitimate. Results are similar to previous studies with trained users [30] 

The family and given names of sender person were like a real staff member. Students’ feedback 

shows that they thought they knew the created person.  

 

5)-This is further reinforced in the third test during which few clicks are counted: 4% for S3, 7% 

for S2, 4% for S1, and 0% for recruited population. It was sent like a normal phishing would be, 

which can explain their improved awareness. Also, the subject might not be of interest for 

everyone (alcohol price reduction). 

 

The same can be said for the second test (email about their timetables and printers), the emails 

had an informative objective and did not present any priority need. Many users said that they 

deleted it without looking at it like they usually do for this kind of email. When asked about its 

legitimacy, they answered that it seemed legitimate but it did not interest them. Therefore, they 
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made a mistake in their analysis but it was a benign one because email deletion protected them 

from possible harm. 

 

6)- Furthermore, many users have bad IT habits. They click on the links present in the emails 

instead of accessing the website by their own means. They do not pay attention to details (sender 

email, mistakes, sending legitimacy). When comparing the number of testers to the amount of 

feedbacks received from the add-on, it appears that users did not feel the need to use proposed 

extension because they did not see problems in the emails or just did not pay attention to pop-up 

[23,24]. When comparing present study to other ones, it was supposed that the pop-up did not 

block the user enough and it could easily be closed. For technical reasons, the pop-up was only 

monochrome which might not have attracted enough user attention. Also its repetitive aspect 

probably contributed to the low amount of feedback from the add-on. 

 

6. CONCLUSIONS 
 

When compared to other similar ones, present study has been conducted in life conditions and not 

in artificial environment. Though more realistic, this might have had a negative impact on present 

results. The objective of the study was to set up a technical solution involving user interaction in 

spam and phishing more effective detection. The intention was to demonstrate that user inclusion 

in the fight (wrestling) against Phishing was more effective than just with the machine. After 

several test campaigns, two observations can be highlighted. First, within the studied framework, 

the results show that proposed tool does not always improve Phishing detection. Aside inherent 

limitations of proposed method, the homogeneous education level of test populations could 

introduce some bias in the results. For instance, some related to many users’ bad IT habits, when 

they base themselves on the combination {sender name/subject} to determine if received email is 

justifiable or not, without paying attention to elements typically present in impish messages, etc. 

This would suggest that there is no “universal” best response for user-technical tool collaboration 

which is depending on both mail subject and warnings nature and ergonomic presentation in tool 

display. This population sensitivity problem will be considered elsewhere. In particular 

circumstances, the use of purely technical solution is more efficient than hybrid one including 

user interaction will be analyzed, because they correspond to situations where user risks to deliver 

bad information to the tool (for example for messages considered as phishing ones by the tool but 

considered as legitimate by the user). 
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