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ABSTRACT

In the theory of rings and modules there is a correspondence between certain ideals of a ring R
and submodules of an R-module that arise from annihilation. The submodules obtained using
annihilation, which correspond to prime ideals play an important role in decomposition theory.
In this paper, we attempt to intuitionistic fuzzify the concept of annihilators of subsets of
modules. We investigate certain characterization of intuitionistic fuzzy annihilators of subsets of
modules. Using the concept of intuitionistic fuzzy annihilators, intuitionistic fuzzy prime
submodules and intuitionistic fuzzy annihilator ideals are defined and various related properties
are established.
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1. INTRODUCTION

The concept of intuitionistic fuzzy sets was introduced by Atanassov [1], [2] as a generalization
to the notion of fuzzy sets given by Zedah [16]. Biswas was the first to introduce the intuitionistic
fuzzification of the algebraic structure and developed the concept of intuitionistic fuzzy subgroup
of a group in [5]. Hur and others in [8] defined and studied intuitionistic fuzzy subrings and ideals
of aring. In [7] Davvaz et al. introduced the notion of intuitionistic fuzzy submodules which was
further studied by many mathematicians (see [4], [9], [12], [13], [14]).

The correspondence between certain ideals and submodules arising from annihilation plays a vital
role in the decomposition theory and Goldie like structures (see [6]). A detailed study of the
fuzzification of this and related concepts can be found in [10], [11] and [15]. Intuitionistic
fuzzification of such crisp sets leads us to structures that can be termed as intuitionistic fuzzy
prime submodules. In this paper, we attempt to define annihilator of an intuitionistic fuzzy subset
of a module using the concept of residual quotients and investigate various characteristic of it.
This concept will help us to explore and investigate various facts about the intuitionistic fuzzy
aspects of associated primes, Godlie like structures and singular ideals.

2. PRELIMINARIES

Throughout this section, R is a commutative ring with unity 1, 1 # 0, M is a unitary R-module and
0 is the zero element of M. The class of intuitionistic fuzzy subsets of X is denoted by IFS(X).
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Definition (2.1)[4] Let R be aring. Then A € IFS(R) is called an intuitionistic fuzzy ideal of R
if forall x,y e R it satisfies

() my(x=y)Zp, () Ap, (y), V,(x=y) <V, () vV, (y);
(ii)ﬂA('x.y)ZﬂA(x)vﬂA(y) > VA(X)’)SVA(X)/\VA()’)-

The class of intuitionistic fuzzy ideals of R is denoted by IFI(R).

Definition (2.2)[4] An intuitionistic fuzzy set A = (1, , V4) of an R-module M is called an
intuitionistic fuzzy submodule IFSM) if for allx, ye M and re R, we have

@) u,0)=1, v, (0)=0;
@) py(x+y) 2 1, ()AL, (Y) 5 Vu(x+y) SV, (0 VY, (y);
(i) f, (r) 2 (%) , v, (o) <v, ().

The class of intuitionistic fuzzy submodules of M is denoted by IFM(M).

Definition (2.3)[2, 12] Let a, € [0, 1] with o + B < 1. An intuitionistic fuzzy point, written as
X(@p), 18 defined to be an intuitionistic fuzzy subset of X, given by

()= (@.p) sif y=x
“PITLOn iy

where C, ;5 (A)= {xe X: u,x)2a and v,(x)< f} is the (e, ) —curt set (crisp set )

. Wewrite x, , € Aif and only if xe C, 4 (A),

of the intuitionistic fuzzy set A in X.

Definition (2.4)[9] Let M be an R-module and let A, B € IFM(M). Then the sum A + B of A
and B is defined as

V.(WVVy(z) ;if x=y+z
1 ; otherwise

MWD AM(2) 5 if x=y+2z

and v, .(x)=
0 ; otherwise res (%) {

Hyp5(X)= {
Then, A + Be IFM(M).

Definition (2.5) Let M be an R-module and let Ae IFS(R) and Be IFM(M). Then the product
AB of A and B is defined as

v,(nvvym) ;if x=mm

MDA (m) 5 0f x=rm ond VAB(x)z{ ,reR meM.

M (%) Z{

Clearly, ABe IFM(M).

0 ; otherwise 1 ; otherwise

Definition (2.6) [9, 12] Let M be an R-module and let A, B e IFM(M). Then the product AB of
A and B is defined as

V(W)WVVe(2) i x=)z

BOIAIE) i =y VAB(X)={ ‘
1 ; otherwise

X)= ,where y,ze M.
Haa () { 0 ; otherwise H2
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Definition (2.7) [3] An PeIFI(R) is called an intuitionistic fuzzy prime ideal of R if for any A,
B e IFI(R) the condition AB c P implies that either AC P or B c P.

Definition (2.8) Let X be a non empty set and A  X. Then an intuitionistic fuzzy set
X4 = ( My, Vv, ) is called an intuitionistic fuzzy characteristic function and is defined as
1 ;if xeA 0 ;if xeA
p, =1 " and v, (=1 " .
A 0 ;ifxgA A 1 ;ifxeA

Definition (2.9) Let Mbe R-module and 7, is an IFS on M defined as z,(x)=(zz,, (x),V,, ().

1 ;if x=0 0 :ifx=6
where 1, (x)= i and v, (x)= )
g 0 ;if x=6 ’ 1 ;if x+6

and o and yr are IFSs on R defined by

Z()(r) = (,U%(r),vlo(l")) and ZR(r) = (’UZR (r)vle (r)),where

1 5if r=0 0 ;if r=0
M, (r)= . 3V, (r)= .
0 0 ;if r0 0 1 ;if r#0

Theorem (2.10) Let xe Rand o, B € (0,1] with o+ B < 1. Then < xp>=(0tP)< >,

and 4, (n=1;v, (=0, ¥ reR.

(@.p) ;if ye<x>

i is called the (a, B)—level(or cut set)intuitionistic
O ;if ye<x>

where (&, 5)_.(y) z{

fuzzy ideal corresponding to <x >.
Proof. Case(i) When ye< x> and let y =x" , for some positive interget n, then

Hap. )= a=p,  ©O<u, ")=pu (y) and
Vap.,. W= p=v, @2v, &)=v, ()

Case(ii) When y ¢ < x >, then
Hap. N=0=u(y) andv,, O=1=v,

Xa.p) (@.f)

Thus in both the cases we find that (e, £)

().

- x(mﬂ)'

<x >

Now <x, 45 > =n{A:Ae IFI(R) such that x,, , < A} implies that (&, B). , , =<x 4 >.

<X >

3. ANNIHILATOR OF INTUITIONISTIC FUZZY SUBSET OF R-MODULE

Throughout this section, R is a commutative ring with unity 1, 1 # 0, M is a unitary R-module and
0 is the zero element of M.

Definition (3.1) Let M be a R-module and Ae IFS(M), then the annihilator of A is denoted by
ann(A) and is defined as: ann(A) = U {B: Be IFS(R) such that BA c z,}.

Lemma (3.2) Let M be a R-module, then ann(y,) = ¥
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Proof. Since y,e€ IFS(M) and y,e IFS(R), therefore, y,x,€ IFS(M).
Also, 2, 2s(x)= (s, , (x), v, , (x)), where
ﬂsze(x):V{lR(r)/\le(m): re R, me M, rm = x} and

Vo (X) = AMx(r)V x,(m): re R, me M, rm = x}.

Now, pr, , (x) =Vv{x(r)A x,(m): re R, me M, rm = x}

v{x,(m): re R, me M, rm = x}

1 ;if x=6 [ if x=0 = onem = 0]
{O if x#6 [ if x#60 = m #0]
Also, v, , (x)=A{xy(r)v x,(m): re R, me M, rm = x}

=/\{;{9(m): re R, me M, rm =x}
0 ;if x=86
={1 Lif x# 6
Thus, % p2e(X) = Yo(x).
So, xrc|J{B: Be IFS(R), By, < x,}=ann(x,) S Xx-
Hence ann(y,) = xx-

Lemma (3.3) Let M be a R-module and Ae IFS(M), then ¥, < ann(A).

Proof.Now,,uZ“A(x)= v{,uh(r)/\,uA(m): re R, me M, rm = x}
When x#60 = r#0;V re R, such that rm = x

= ,uh(r)=0 V re R, such that rm = x.So,,ulOA(x)=O=,u“(x).
When x =6 = 'UZUA(H)SIZ'UZQ(Q)' Thus, ,UZUA(x)S,uZe(x).
Similarly, we can show that VZOA(x) > Vle(x). Therefore, y,A C %,.

Hence y, U {B : Be IFS(R) such that BA < y,}=ann(A).

Lemma (3.4) Let M be a R-module and A, BEIFS(M). If A < B, then
ann(B) c ann(A).

Proof. Let A, Be IFS(M), C € IFS(R). Then CA(x) = (4. (x), V¢, (x)), where
Uey(X)=v{to(r)Au,(m): re R, me M, rm = x} and
Vea () =a{vo(ryvv,(m): re R, me M, rm = x}.
Now, o (rynp,(m) < po(r) A py(m)
Therefore, ., (x)=v{u.(r)Au,(m): re R, me M, rm = x}
Sv{,uc(r)/\,uB(m): re R, me M, rm =x}
= Hep (X).
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Similarly, we can show that v ,(x) 2V, (x). Thus CA c CB.
So,CBc y, = CAC y,.
~ |J{C:Ce IFS(R) such that CB < y,} < | J{C:Ce IFS(R) such that CA ¢ z,}
= ann(B) c ann(A).

Theorem (3.5) Let M be a R-module and A IFS(M). Then

ann(A)=|J{r, 4 : re R.a,Be[0,1] with o+ <1 such that r, ,Ac 7,]
Proof. We know that

{r(a,/i'): re R,a,p € [0,1] with ¢ + f <1 such that a p)

Ac y,}e IFS(R)
{r(ayﬁ): re R,a,pf €[0,1] with & + f <1 such that r, 5 A C /1'9}
c {B: Be IFS(R) such that BAc yx,}
= U {r(aﬁ): re R,a,p e [0,1] with & + <1 such that r, ;A C ,1'9}

c U {B: Be IFS(R) such that BA C y,}=ann(A).
Let Be IFS(R)such that BA c yx,.
Let re Rand B(r) = (a,f) ,i.e, uy(r)=a and v (r)=p.

Now, (r,A)(x) = (ﬂna_ﬂ)A(X), V,m_ﬁ)A(x)), where

,urw_ﬁ)A(x)zv{,u (s)Au,(y): seR, ye M,syzx}
vi{g (o Aap,(y): yeM, ry=x}[ v u
v{uy()Au,(y): seR, ye M, sy=x}
= Mg, (X)
< i, (x)
ie., ,urm_ﬁ)A(x)S,uh(x), YV xe M.

Ta.p)

IN

($)Sug(r)=a]

Tta.p)

Similarly, we can show that sz.mA (x) = V. (x), V xe M. Thus, r(aﬁ)A < Xo-
So, ann(A) < U{r(alﬁ) :re R,a,fe[0,1] with @ + f <1 such that TapyAC ,{3}
Hence ann(A) = U{r(aﬁ) :re R,a,fe[0,1] with & + § <1 such that 7, ;A C ;(9}.

Theorem (3.6) Let M be a R-module and A€ IFS(M). Then ann(A)A c g,.

Proof. Now, (ann(A)A)(x)=(tymaa(X)s Vamara (X)), Where
ﬂann(A)A('x) :V{/Uann(A)(r)/\/UA()’): reR,yeM, ry= x} and

VW(A)A(x):/\{VW(A)(r)va(y): re R, yeM, ry:x}.
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Therefore, Honaya (X) =v{,uann(A)(r)/\,uA(y): reR, yeM, ry= x}
= v[v{u,(r):Be IFS(R), BAC y,} A1, (y). re R, ye M, ry=x]
= v{u,(r’)Ap,(y):Be IFS(R), BAC 7,, re R, ye M, ry=1x}
<v{u,, (ry):Be IFS(R), BAC y,, re R, ye M, ry=x}
Sv{,u%(x): BAQZH}
= 1, ()

L. Myma(X)S U, (X), VXeM.

Similarly, we can show that v, ,(x)2V, (x), Vxe M.

Thus (ann(A)A) C %,
Corollary (3.7) If AcIFS(M) be such that ua(0) = 1 and v,(0) =0, then ann(A)A = g,.
Proof. By Lemma (3.3) we have ¥, < ann(A)

= u, 0)s t,,,(0) and v, (0)2 v, ., (0)
e, 1 <u,,4(0)and 0 2 v, ., (0)
= Hopniay(0)=1and v, ., (0)=0.
NOoW, o inia(8) =V {tumi, (AU, (m): re R, me M, rm =6}
> fyin (0) A 12,(6)
=1Al1=1
i€, U aa(@)=1.Similarly, we can show that v ., ,(8)=0.
Therefore, y, < ann(A)A. Hence by Theorem (3.6) we get
ann(A)A = y,.
Note (3.8) If AcIFM(M), then ann(A)A = Y.
Theorem (3.9) Let M is a R-module and B € IFS(R), Ae IFS(M) such that BAC ¥, if and only
if B c ann(A).
Proof. By definition of annihilator BAC %y = B < ann(A).
Conversely, let B € ann(A) = BA c ann(A)A C X -
Corollary (3.10) If in the above theorem (3.8) ug(0) = 1, vg(0) = 0 and pA(0) = 1, vA(0) = 0,
then BA =7 if and only if B < ann(A).
Theorem (3.11) Let M is a R-module and A, B€ IFS(M). Then the following conditions are
equivalent:
(i) ann(B)=ann(A), for all BC A, B# %,.
(it) CBc g, implies CAc y,, for all BC A, B# y,, Ce IFS(R).
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Proof. For (i) = (ii) Let CB < %s. Then by theorem (3.9) we have
C c ann(B) = ann(A) (by (i)). Again by the same theorem we have CA C .
For (ii)) = (i) By theorem (3.6) we have ann(B)B < .
So (ii) implies ann(B)A < %s where B C A, B # .
By theorem (3.8) ann(B) < ann(A).
Also, B < A = ann(A) ¢ ann(B). Thus ann(A) = ann(B).
Corollary (3.12) If in the above theorem pA(0) = 1, vo(0) =0 and ug(0) = 1, vg(0) = 0. Then
the above theorem can be stated as: The following conditions are

equivalents:
(i) ann(B)=ann(A), for all BC A, B# y,.
(il) CB=y, implies CA=y,, for all BC A, B+ y,, Ce IFS(R) with 1.(0) =1, v.(0) =0.
Theorem (3.13) Let M is a R-module and Ae IFS(M). Then
ann(A) = U{B: Be IFI(R) such that BA C g,}, where IFI(R) is the set of intuitionistic fuzzy ideals of R.
Proof. Qearly, | }B: Be IFI(R) suchthat BAC ,} <|_fB: BeIFS(R) such that BAC 7} =amn(A).
Let re R,ax, S €[0,1] with @+ <1 such that Ty A Xo-
Let B=<r,, >.Then <r,,>A =(a,p)_.A
Again, fy g () =V{llgp. (IAH,()| rER, yeM, sy=x]
=v{aau,(y) se<r> yeM, sy=x}
<v{u, (7)1 1€ R ye M, try) =}
<v{u, ()l te R, ye M, try)=x}
<v{m, ()| te R, ye M, t(ry) =x}
=H, (x).
Thus, t, 5 (%)<, (x).Similarly, we can show that v, 5 ,(x)2V, (x),Vxe M.

Therefore, we have (o, 5)_,.AC %,.

Hence U{B: Be IFI(R) such that BAC y,} 2
Ufres : re R @,Be[0,1] with @+ B<1such that 7, s A < 7,} = ann(A).

Hence ann(A)= U{B : Be IFI(R) such that BA C %, }.

Theorem (3.14) Let M is a R-module and Ae IFS(M). Then ann(A) € IFI(R).

Proof. Since ¥oA < %p,80 %o <ann(A).Let 1,1, € R be any elements. Then,
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Hany T A B (1)

=(v{m, () : A € IFIR). AAC 1} A(V{m, (1)1 A, € IFIR). A,AC 2,})
=vis, (D Ap, (n): AL A € IFIR),AAC 2, AAC 2}

<Aty o (DAL (1) ALA € IFIR),AAC 2, AAC 2}
<Vt (i—1): A+ A, € IFIR),AA+ AAC (A +A)AC Xy + Xy = X}
<v{u,(r—r,):Be IFI(R),BAC ¥,}

= iy (1= 13-

Thus’ ﬂalm(A) (’i - r2) 2 ll’lann(A) (ri) A ﬂann(A) (rZ )'
Similarly, we can show that v, (n—=r)<V, (DAY, 40 (05).

Again, 11, . (sr) =\{t;(sr): B€ IFI(R), BAC %,} 2 V{(r): B€ IFI(R), BAC %} = 0 (1.
Thus, 4, (S7) 2 [, 4, (r). Similarly, we can show that v, . (sr)<V,, . (r), Vr,s€ R
Hence ann(A)e IFI(R).

Theorem (3.15) Let M is a R-module and A, IFS(M), i € A. Then

ann(U Al} = ﬂann(Ai ).

ieA ieA

Proof. ann(U A,.J=U{B: Be IFS(R) such thatB(U A,.Jg ,{H}

ieA ieA

= U{B: Be IFS(R) such that | BA, ¢ ;(9}

i€ A
c J{B: Be IFS(R) such that BA, < 7,}
=ann(4;,), Vie A.

Hence ann[U A,.J c ﬂ ann(A,).
ieA ieA

By Theorem (3.6), we have

(ﬂ ann(A,.)j[U Aj] = (ﬂ ann(Ai)AjJ c U (annapa,)c U 2, = 2.

i€ A JjeA jeA \ieA JjeA JjeA

Thus ﬂ ann(A;) C ann(U Aij.

ie A ie A

Hence ann(U A,) = ﬂ ann(A,).

i€ i€
Theorem (3.16) Let M is a R-module and A, B € IFM(M), then
ann(A+B) = ann(A) N ann(B).
Proof. Since A, B € IFPM(M) = A + B € IFM(M), we have
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Has (D)= Y ) A (D} 2 1, () A 1y (8) = p1,(x) and
V(X)) = X:/;+Z{VA(y)va(z)} SV, () VvV, (0)=V,(x), Vxe M.

This implies that A € A+ B and B Cc A+B.
So, ann(A+ B) cann(A) and ann(A+ B) C ann(B)

= ann(A+ B) c ann(A) Nann(B).
Now, ann(A)Nann(B)

= (U{A 1A e IFIRR),AAc x,})n(U{B,|B e IFI(R),BB  %,})
=U{A NB,|A,B e IFI(R),AAC ¥,.BBC %,}
cu{CIC=ANnBeIFI(R),CAc 7,,CBC 1,}
cu{CIC=ANB e IFI(R),C(A+B)c CA+CB C %,}
=U{CICe IFI(R),C(A+B)C %,}

=ann(A+B).

Therefore, ann(A) Nann(B) < ann(A+ B).

Hence ann(A+ B)=ann(A) nann(B).

Definition (3.17) Let M be R-module. Then Ae IFS(M) is said to be faithful if ann(A) = Y.

Lemma (3.18) Let Ae IFS(M) be faithful, where M is R-module. If R is non-zero then
A# Xeo-
Proof. Since A is faithful = ann(A) = ¥,.

If A=y then ann(A) = ann()e) =r- Thus we have }o =g = R = {0}, a contradiction.
Therefore, A # Y.

Theorem (3.19) Let A € IFS(R) with u,(0) = 1, vo(0) = 0. Then A < ann(ann(A)) and
ann (ann(ann(A))) = ann(A).

Proof. Let A be an intuitionistic fuzzy subset of R-module R. Then by corollary (3.7), we have
ann(A)A = .

By theorem (3.9), we have A C ann(ann(A)) ....ccce..ee. (D)

= ann(ann(ann(A))) c ann(A) [using lemma (3.4) ]

Again using (1) : ann(A) < ann(ann(ann(A))).

So, ann (ann(ann(A))) = ann(A).

Theorem(3.20) Let A € IFS(M). Then

C o p (ann(A)) c ann(C,, 4 (A),V @, (0,1] with a+ S <1.
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Proof. Let xe C,, 4 (ann(A)). Then f,,, ()2 >0 and v, , ()< <1

= v{u,(x):Be IFI(R),BAc y,} 2 and A{v,(x):Be IFI(R),BAC ,} <

= w(x)2a and v,(x)< S for some Be IFI(R) with BAC y,.

If x¢ ann(C, ﬂ)(A)) then 3's some ye C . ﬂ)(A) such that xy # 6.

Now, t,, (xy) 2 pty(xX) A, (y)2 >0 and v, (xy) Sv,(x)vv,(y) < <],

which is a contradiction. Hence C 5 ann(A)) < ann(C, 4 (A)).

Definition (3.21) AcIFI(R) is said to be an intuitionistic fuzzy dense ideal if ann(A) =y, .
Definition (3.22) AeIFI(R) is called intuitionistic fuzzy semiprime ideal of R if for any IFI B
of R such that B> c A implies that B C A.

Theorem (3.23) If A is an IFI of a semi prime ring R, then A M ann(A) =%, and A + ann(A) is
an intuitionistic fuzzy dense ideal of R.

Proof. Since A nann(A) C A, A Nann(A) C ann(A) so (A N ann(A))’ C A ann(A) Xo-
Now R is a semiprime ring and it implies that O is a semiprime ideal of R so ) is an intuitionistic
fuzzy semi prime ideal of R.

Also, (A Nann(A))’ C Xo = A nann(A) %o and hence A N ann(A) =%, .

Hence ann(A + ann(A)) = ann(A) N ann(ann(A)) =7, proving thereby A+ ann(A) is an
intuitionistic fuzzy dense ideal of R.

Theorem (3.24) Let A be a non-zero intuitionistic fuzzy ideal of a prime ring R with p.(0) = 1,
vA(0) =0. Then A is an intuitionistic fuzzy dense ideal of R.

Proof. Now, A ann(A)= yy = ann(A)= Y or A= %o. But A# %, soann(A)= 7.
Hence A is an intuitionistic fuzzy dense ideal of R.

Definition (3.25) If Ae IFS(R). Then the intuitionistic fuzzy ideal of the form ann(A) is called
an intuitionistic fuzzy ideal. Thus if A is an intuitionistic fuzzy annihilator ideal if and only if A
= ann(B) for some B € IFS(R) with with ug(0) =1, vg(0) = 0.

Remark (3.26) In view of theorem (3.19) it follows that A is an annihilator ideal of R implies
ann(ann(A)) = A.
Theorem (3.27) The annihilator ideals in a semiprime ring form a complete Boolean algebra
with intersection as infimum and ann as complementation.

Proof. Since ﬂann(A,.) = ann(ZAij, so any intersection of annihilator ideals is an
iel iel

intuitionistic fuzzy annihilator ideal. Hence these ideals form a complete semi-lattice with

intersection as infimum. To show that they form a Boolean algebra it remain to show that:
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AN ann(B) = g, if and only if A c B, for any annihilator ideals A and B.

If AcBthen An ann(B) € Bn ann(B) = g,.

Conversary, let AN ann(B) = .

Now, Aann(B)c An ann(B) =y, = A c ann(ann(B)) =B.

Theorem (3.28) Let M be a non-zero R-module. Suppose that there exist no ideal A maximal
among the annihilators of non-zero intuitionistic fuzzy submodules (IFSMs) of M. Then A is an
intuitionistic fuzzy prime ideal of R.

Proof. Since A is maximal among the annihilators of non-zero intuitionistic fuzzy submodules
(IFSMs) of M. Therefore there is an IFSM B (# %) of M such that A = ann(B).

Suppose P, Q € IFI(R) properly containing A (i.e., AcP and A < Q) such that PQ C A.

If QB =1y, then Q c ann(B) = A, which is a contradiction to our supposition so QB # (.
Now,PQc A = P(QB) c AB=ann(B)B=0QB = ). So Q < ann(QB).

Hence A < ann(QB). This is a contradiction of the maximality of A. So A is an intuitionistic
fuzzy prime ideal of R.

Remark (3.29) If AcIFM(M) , A =y satisfying one (hence both) the condition of Theorem
(3.11) then A is called an intuitionistic fuzzy prime submodule of M.

Theorem (3.30) If A is an intuitionistic fuzzy prime submodule of M then ann(A) is an
intuitionistic fuzzy prime ideal of R.

Proof. Let A be an intuitionistic fuzzy prime submodule of M and PQ < ann(A) , where Q is not
contained in ann(A). Then

Xo# QA C A. Now PQ cann(A) = (PQ)A c ann(A)A =g.

So, P cann(QA)=ann(A), as A is prime. Hence ann(A) is prime ideal of R.

4. CONCLUSIONS

In this paper we have developed the notion of annihilator of an intuitionistic fuzzy subset of a R-
module. Using this notion, we investigate some important characterization of intuitionistic fuzzy
annihilator of subsets of modules. The annihilator of union (sum) of intuitionistic fuzzy
submodules are obtained. Annihilator of intuitionistic fuzzy ideal of prime ring, semi prime ring
are also obtained. Using the concept of intuitionistic fuzzy annihilators, intuitionistic fuzzy prime
submodules and intuitionistic fuzzy ideals are defined and various related properties are
established.
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