
Dhinaharan Nagamalai et al. (Eds) : COSIT, AIAPP, DMA, SEC - 2019
pp. 33–44, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90204

THE IMPLICIT PATH COST

OPTIMIZATION IN DIJKSTRA ALGORITHM

USING HASH MAP DATA STRUCTURE

Mabroukah Amarif and Ibtusam Alashoury

Department of Computer Sciences, Sebha University, Sebha, Libya

ABSTRACT

The shortest path between two points is one of the greatest challenges facing the researchers
nowadays. There are many algorithms and mechanisms that are designed and still all according
to the certain approach and adopted structural. The most famous and widely used algorithm is
Dijkstra algorithm, which is characterized by finding the shortest path between two points
through graph data structure. It’s obvious to find the implicit path from the solution path; but
the searching time varies according to the type of data structure used to store the solution path.
This paper improves the development of Dijkstra algorithm using linked hash map data
structure for storing the produced solution shortest path, and then investigates the subsequent
implicit paths within this data structure. The result show that the searching time through the
given data structure is much better than restart the algorithm again to search for the same path.

KEYWORDS

Dijkstra algorithm, data structure, linked hash map, time complexity, implicit path, graph

1. INTRODUCTION

The graph is defined as a set of nodes (Vertices) and edges that link these nodes. Each edge is
marked with a weight value describing the cost between the connected nodes. There are two types
of graph; directed graph for which each node is directed by one way to any other node, and
undirected graph for which its possible to go to and back from the same way between two
connected nodes. The issue of the shortest path problem is related to graph theory, which is one of
the most important topics for researchers [1, 2, 3, 4, 5, 6, 7]. It concerns with finding the shortest
path between two nodes, or between a node as a source to all other nodes, depending on the
weights of the edges that link these nodes [8]. The graph theory and shortest path are used widely
especially in the practical applications of various fields, the most important are roads, transport
networks and geographic information systems [9, 10, 11, 12].

Various algorithms have been created to find the shortest path within graphs. These algorithms
depend on the graph and path type. The most famous of these algorithms are Dijkstra algorithm
[13], Bellman, the Johnson, and the Floyd Warshall algorithms [14].

Based on the rapid development and handling of the huge amount of road networks data and their
development methods, researchers try to improve the previous algorithms or develop their own
[4, 7, 9, 10, 11, 12]. They are also exploring more various ways and methods to get the lowest
cost of path into a large number of nodes and speeding up their search process. Some of them are
working on reconstructing the graphs in an attempt to reduce the cost of searching time either by

34 Computer Science & Information Technology (CS & IT)

compression, optimization or subgraphs [1, 2, 3, 4, 5, 6, 15]. Others are replacing data structure
with another [18, 19, 20, 21].

However, the field remains open to researchers to discover more ways and mechanisms in an
attempt to get the lowest search cost within a large number of nodes and accelerate the search
process which is a challenge until this time. This paper proposes an improvement of Dijkstra
algorithm using a special data structure (linked hash map) for storing the solution path (shortest
path given by Dijkstra algorithm) to optimize the searching time for the implicit paths. The
proposed algorithm uses Dijkstra algorithm with priority queue implemented by min heap to find
the solution path (shortest path). The solution path is stored into data structure of array list
contains of a linked hash map elements. We have tested the proposed algorithm with different
graphs sizes up to 10000 nodes. The following section describes the most related works to our
paper while section 3 explains the algorithm description. Analysis and results are described in
section 4. A discussion of this paper is explained in section 5 and the conclusion is provided in
section 6.

2. RELATED WORK

Dijkstra algorithm was designed by the Dutch computer scientist Edsger Dijkstra in 1956 and
published in 1959 [13]. It’s the most popular algorithm in the area of finding shortest path from
single source to a node destination, or multiple nodes destination within a graph [16, 17, 22]. It
can also be used to find the shortest route costs from the source to the destination by stopping the
algorithm once the shortest route is set to the specific target.

This algorithm has been considered by many researchers to improve the shortest path cost by
minimizing the searching time (time complexity) using different data structure. Jain et. al.
improve the Dijkstra algorithm by using priority queue and linked list [18]. It has been noticed
that by using a graph represented by thier adjacncey lists and the priority queue implemented as a
min-heap, the time efficiency is in O(|E| log |V |), where V is the number of nodes and E is the
number of edges which connected these nodes. if the priority queue is implemented using an
advanced data structure called the Fibonacci heap, the time becomes O(|V| log V+E), and its
imporved [16].

Time efficiency could be imporved by exploit the solution path to get the implicit paths if they are
queried again. From the literature, most algorithms may provide this feature, but there is no such
explanation or imporvement of it. A suitable data structure could improve the time efficiency for
the whole algorithm if used propably for storing the solution path and then search for the implicit
path. In this paper, we propose for an improved algorithm based on Dijkstra algorithm by using a
special data structure (linked hash map) to store the solution path. The proposed algorithm is
tested with different number of nodes. Results are recorded to justify the Algorithm validity.

3. THE PROPOSED ALGORITHM DESCRIPTION

The idea of Dijkstra algorithm is genius and amazing. In addition, it’s simple and easy to
understand especially by using non complicated data structure such as priority queue
implemented as a min-heap. Although Fibonacci heap has achieved greater success and better
performance, however, it’s complicated and often theoretical more than practical issues [16].
Based on all of that, we use Dijkstra algorithm with priority queue implemented as a min-heap.
For storing the solution path, we use a linked hash map within array list. This can give us a fast
searching time equal to O(1) as an efficiency time. The following steps explain the main idea of
Dijkstra algorithm [16].

Computer Science & Information Technology (CS & IT) 35

DIJKSTRA. (G,w,s)
1 INITIALIZE-SINGLE-SOURCE.(G, s)
2 S=Ø;
3 Q=G.V
4 while Q ≠ Ø ;
5 u=EXTRACT-MIN(Q)
6 S=SU{u}
7 foreach vertex v €G.Adj[u]
8 RELAX (u,v,w)

in step 1, the initialization of the source node s in the graph G is carried out. Step 2 initializes the
set S to the empty set. The algorithm maintains the invariant that Q = V - S at the start of each
iteration of the while loop of step 4 until step 8. Step 3 initializes the min-priority queue Q to
contain all the vertices in V ; since S = Ø at that time, the invariant is true after step 3. Each time
through the while loop of steps 4 until step 8, step 5 extracts a vertex u from Q = V - S and step 6
adds it to set S, for the first time through this loop, u = s. Vertex u, therefore, has the smallest
shortest path estimate of any vertex in V - S. Then, step 7 and step 8 relax each edge (u,v). Notice
that w is the wieght of the given edge.

We have built the storage data structure and identified a variant of the type of array-list which
contains of a set of linked-hash-map (each value within the array-list is actually linked-hash-map
includes a particular path) to store any path that has been queried .The hash-map is used to store
the nodes and the distance between them. Each hash-map consists of (Key, Value). Each node
and adjacent is stored in the key, while the distance between them is stored in Value. The
following code describes the idea of storing and searching operations of the storage data structure.
//storing operation

public static ArrayList<LinkedHashMap<Integer,Integer>> AddtoPaths(List<Integer> path,int
srcc,int destt)
{
 if(path!=null)
 {
 if(AddHashMap.size()!=0)
 AddHashMap.clear();
 for (int i = 0; i < path.size() ; i++)
 { AddHashMap.put(path.get(i),i); }
 IndexHashMap=(LinkedHashMap) AddHashMap.clone();
 AddHashMap.clear();
 if(!dublecateData(IndexHashMap,paths1,srcc,destt))
 {
 paths1.add(IndexHashMap);
 Addtolinked1(IndexHashMap,paths1);
 }
 }
 return paths1;
 }

public static boolean dublecateData(LinkedHashMap<Integer,
Integer>IndexHashMap1,ArrayList<LinkedHashMap<Integer, Integer>> paths11,int srcc1,int destt1){
 for(LinkedHashMap<Integer, Integer> p:paths11){
 if(p.equals(IndexHashMap1)){
 return true;

36 Computer Science & Information Technology (CS & IT)

 }
 }
 for(LinkedHashMap<Integer, Integer> s:paths11)
 {
 if(s.containsKey(srcc1) && s.containsKey(destt1))
 { return true; }
 }
 return false;
 }

public static void Addtolinked1(LinkedHashMap<Integer,Integer>
path,ArrayList<LinkedHashMap<Integer,Integer>> paths1){

 int ii=1;
 int i;
 if(paths1.size()>0){
 i=paths1.size()-1;
 }else{i=paths1.size();}
 if(path!=null){
 comp = new ArrayList<Integer>(path.keySet());
 for (int j = 0; j < comp.size() ; j++) {

if(Number_of_Nodes.containsKey(comp.get(j)) && Number_of_Nodes.get(comp.get(j))!=null
&& Number_of_Nodes.get(comp.get(j)).size()>0)
{

 Number_of_Nodes.get(comp.get(j)).add(i);
 }else{
 Number_of_Nodes.put(comp.get(j),new ArrayList<Integer>());
 Number_of_Nodes.get(comp.get(j)).add(i);
 }
 } comp.clear();
 } }

//searching operation
public static ArrayList findShortestPathsDS(int src,int dest,Graph graph)
{ start_time2 = System.nanoTime();
 ArrayList subPath = new ArrayList();
 Number_of_Nodes
 From=Number_of_Nodes.get(src);
 To=Number_of_Nodes.get(dest);
 if(MainClass.From!=null && MainClass.To!=null && MainClass.From.size()>0 &&
MainClass.To.size()>0)
 {
 SO=FoundContains(From,To);
 } else
 { time11=0.0;
 text = "\n The path is not implicit, So The path will be calculated using Dijkstra";
 subPath= (ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 time11=Graph.time;
 return subPath;
 }
 if(SO >=0)
 {

Computer Science & Information Technology (CS & IT) 37

 if((paths1.get(SO).containsKey(src)) && (paths1.get(SO).containsKey(dest)))
 {
 found=true;
 i=SO;
 }
 if(found)
 {
 src1=paths1.get(SO).get(src);
 dest1=paths1.get(SO).get(dest);
 ss1=new ArrayList(paths1.get(SO).keySet());
 if (src1 <= dest1)
 {
 for (ii = src1; ii <= dest1; ii++)
 { subPath.add(ss1.get(ii)); }
 }else{
 for (ii = src1; ii >= dest1; ii--)
 {
 if (ii >=0)
 subPath.add(ss1.get(ii));
 }
 }
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 } else{
 time11=0.0;
 text = "\n The path is not implicit,So The path will be calculated using Dijkstra";
 subPath= (ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 time11=Graph.time;
 }
 return subPath;
 } else{
 time11=0.0;
 text = "\n The path is not implicit,So The path will be calculated using Dijkstra";
 subPath= (ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 time11=Graph.time;
 }
 return subPath;
 }
 public static Integer FoundContains(ArrayList<Integer> From11,ArrayList<Integer> To11)

{
 int SO1=-1;
 To12.clear();
 From12.clear();
 if(From11.size()>0 && To11.size()>0)
 {
 if(From11.size()>=To11.size())
 {

38 Computer Science & Information Technology (CS & IT)

 for (int i = 0; i <To11.size(); i++)
 { To12.put(To11.get(i), i); }
 for (int i = 0; i <From11.size(); i++)
 {
 if(To12.containsKey(From11.get(i)))
 {
 SO1=From11.get(i);
 break;
 }
 }
 }else{
 for (int i = 0; i <From11.size(); i++)
 { From12.put(From11.get(i), i); }
 for (int i = 0; i < To11.size(); i++)
 {
 if (From12.containsKey(To11.get(i)))
 {
 SO1=To11.get(i) ;
 break;
 }
 }
 } return SO1;
 } return SO1; }

4. THE ALGORITHM ANALYSIS AND RESULTS

The time complexity of hash-map, linked-hash-map and array-list are different according to the
kind of operations. Table 1 and 2 describes the time for each given data structure.

Table 1. The time complexity of hash-map and linked-hash-map

 get Contains Key next note
Hash-map O(1) O(1) O(h/n) h is the table capacity

Linked-hash-map O(1) O(1) O(1)

Table 2. The time complexity of array-list

 get add contains next remove Iterator_remove
Array-list O(1) O(1) O(n) O(1) O(n) O(n)

According to the previous tables, n means the number of nodes (V), and m means the number of
edges (E). The total time for putting the new solution path in the given data structure is:

O(nlogn) + O(n) + O(nlogn) = O(n) + O(2nlogn) = O(2nlogn) = O(nlogn)
In the other side, the total time complexity of the query from the data structure is:
O(logn)+O(logn)+O(nlogn)+O(logn)+O(logn)
=O(4logn)+O(nlogn)
=O(logn)+O(nlogn)
=O((1+n)logn) =O(nlogn)

We run the original Dijkstra algorithm and the proposed algorithm with directed graph; where
there is only one way from a node to other. We also run both of them with different number of

Computer Science & Information Technology (CS & IT) 39

nodes in order to get the shortest path between a given source node and destination. After the
solution path is found, it’s stored in the given data structure (array-list of linked-hash-map). Then,
an inquiry for the implicit path is taken place. If the implicit path is found within the stored
solution path in the given data structure, the time is calculated and recorded, else; the searching
using the original Dijkstra algorithm is started again and the total time is recorded. The averages
of each recorded times are calculated. These operations are repeated many times with different
number of nodes. Table 3 and 4 contain the averages values of the time when the required path is
the implicit path of the stored solution path and figure 1 and 2 shows the results analysis.

Table 3. The run time of the implicit path (directed graph)

No. of nodes
Dijkstra using only min-heap

Time average

Dijkstra using min-heap with
ArrayList<LinkedHashMap>

Time average
100 0.66256 0.28489
200 1.47381 0.3076
300 2.06859 0.34078
400 4.15724 0.38133
500 5.56397 0.28971
600 2.552 0.24657
700 3.15004 0.51842
800 8.35776 0.22292
900 5.11631 0.21436

1000 4.81021 0.2146

Figure 1. The run time of 100-1000 number of nodes (directed graph)

From figure 1, we notice that the time decreases as the number of nodes increases. Time average
is equal to 0.28489 when the number of nodes is 100, then time increases with unobserved
amount. It gives the highest value when 700 nodes and starts to decrease at 800 nodes and above.

40 Computer Science & Information Technology (CS & IT)

Table 4. The run time of the implicit path (directed graph)

No. of nodes
Dijkstra using only min-heap

Time average

Dijkstra using min-heap with
ArrayList<LinkedHashMap>

Time average
1000 4.81021 0.2146
2000 11.03552 0.18769
3000 13.76008 0.17272
4000 12.66174 0.19816
5000 15.29122 0.16887
6000 20.46555 0.18637
7000 47.87112 0.1797
8000 27.05117 0.17704
9000 55.55694 0.18778
10000 42.26821 0.17102

Figure 2. The run time of 1000-10000 numbers of nodes (directed graph)

Looking at figure 2, nodes numbers are various from 1000 to 10000 nodes. We realize that the
time decreases as the number of nodes increase and that improved the proposed algorithm
validity. We observe a linear time for the given data structure; ArrayList<LinkedHashMap>.

Table 5 and 6 contain the averages values of the time when the required path is not the implicit
path of the stored solution path and figure 3 and 4 show the results analysis.

Table 5. The run time of the non-implicit path (directed graph)

No. of nodes
Dijkstra using by

min-heap
Dijkstra using by min-heap with

ArrayList<LinkedHashMap>
100 0.86681 0.92647
200 2.30324 2.41939
300 3.15914 3.27483
400 3.45716 3.54365
500 4.5522 4.64095
600 4.08183 4.17757
700 7.1498 7.26413
800 5.8222 5.90921
900 7.55844 7.65247

1000 7.73631 7.84603

Computer Science & Information Technology (CS & IT) 41

Figure 3. The run time of 100-1000 number of nodes (directed graph)

Figure 3 describes the run time of non-implicit path if it’s not included within the stored solution
shortest path. The relationship between run time and nodes numbers is shown. It is observed that
the time for the proposed algorithm is almost equal to the original Dijkstra algorithm with min-
heap. There is a slightly fixed difference as the nodes numbers increases.

Table 6. The run time of the non-implicit path (directed graph)

No. of nodes
Dijkstra using by min
heap

Dijkstra using by min heap with
ArrayList<LinkedHashMap>

1000 7.73631 7.84603
2000 11.90012 12.02769
3000 17.38345 17.50731
4000 31.68681 31.79614
5000 35.59574 35.68865
6000 57.20521 57.31768
7000 67.07719 67.16318
8000 35.34394 35.4589
9000 73.9846 74.109
10000 69.43308 69.54271

Figure 4. The run time of 1000-10000 number of nodes (directed graph)

42 Computer Science & Information Technology (CS & IT)

From figure 3 and 4, we notice that almost the same time is observed for searching for a path
which is not a sub path from the solution shortest path.

5. DISCUSSION

In this paper, a case study of random directed graph with different number of nodes has been
carried out in order to test the validity of our proposed algorithm. The same case study has been
given to the original Dijkstra algorithm with priority queue implemented as a min-heap. The
results of both algorithms have been recorded and analysed. Comparisons between these results
have shown that the proposed algorithm is almost the best. Although more data structures have
been used within the proposed algorithm, however, the enlarged storage is available for all of the
current devices, even for the smallest one. We argue that data storages aren’t problem if the
performance of the given algorithm is higher and success. It has been observed that the searching
time of the original algorithm is almost the same as the time of the proposed algorithm if the
required path is not an implicit path within the solution path. Regarding of the results in the
literature, run time is various depending on the type of used data structure and also CPU speed.
Although our results give a good time average for searching within a solution path, we realize that
the greater the number of nodes, time becomes less and less. This can work in a large storage of
nodes especially in a huge road network.

6. CONCLUSION AND FUTURE WORK

The analysis of searching time for implicit path seems to be rare and less concern. Most available
algorithms expect the nature of easy time searching for sub path within the solution path. Well,
data structure plays main role in the whole procedures and operations. We realize this point when
we start proposing our idea for improvement of the available Dijkstra algorithm. We consider
improving the time complexity of implicit path within the solution path as a first starting point.
According to our results, the improvement of the proposed algorithm is achieved with regard of
directed graph. This type of graph could reflect the one way road in reality. The proposed
algorithm achieves the best result especially for a large number of nodes. Our future work will
consider the undirected graph. We also plan to apply our proposed algorithm to a real network
road map to show the performance and improve the validity from a real point of view.

REFERENCES

[1] Arman, N., & Khamayseh, F., (2015) "A Path-Compression Approach for Improving Shortest-Path

Algorithms," International Journal of Electrical and Computer Engineering, vol. 5, p. 772,.

[2] Broumi, S., Bakal, A., Talea, M., Smarandache, F., & Vladareanu, L., "Applying Dijkstra algorithm

for solving neutrosophic shortest path problem," International Conference on Advanced Mechatronic
Systems (ICAMechS), 2016, pp. 412-416.

[3] Gao, J., Zhao, Q., Ren, W., Swami, A., Ramanathan, R., & Bar-Noy, A., (2015) "Dynamic shortest

path algorithms for hypergraphs," IEEE/ACM Transactions on Networking, vol. 23, pp. 1805-1817.

[4] Gutenschwager, K., Völker, S., Radtke, A., & Zeller, G., "The shortest path: Comparison of different

approaches and implementations for the automatic routing of vehicles," in Simulation Conference
(WSC), Proceedings of the 2012 Winter, 2012, pp. 1-12.

[5] Khamayseh, F., & Arman, N., (2015) "Improvement of Shortest-Path Algorithms Using Subgraph’s

Heuristics”. Journal of Theoretical & Applied Information Technology, vol. 76.

Computer Science & Information Technology (CS & IT) 43

[6] Niemeyer, K., E., & Sung, C.-J., (2016) "On the importance of graph search algorithms for DRGEP-
based mechanism reduction methods," Combustion and Flame, vol. 158, pp. 1439-1443.

[7] Shu-Xi, W., (2012) "The improved dijkstra's shortest path algorithm and its application," Procedia

Engineering, vol. 29, pp. 1186-1190.

[8] Douglas,W., B., (2001) Introduction to Graph Theory, Pernice Hall.

[9] Chandra, "Shortest Path Problem for Public Transportation Using GPS and Map Service," 2012.

[10] Saab, Y., & VanPutte, M., (1999) "Shortest path planning on topographical maps," IEEE Transactions

on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 29, pp. 139-150.

[11] Xing, S., & Shahabi, C., "Scalable shortest paths browsing on land surface," in Proceedings of the

18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2010,
pp. 89-98.

[12] Faro, A., & Giordano, D., (2016) "Algorithms to find shortest and alternative paths in free flow and

congested traffic regimes," Transportation Research Part C: Emerging Technologies, vol. 73, pp. 1-
29.

[13] Dijkstra., E., W., (1959) “A note on Two Problems in Connexion with graphs”, Numerische

Mathematik, 1, 269-271.

[14] Thorat, S., & Rahane, S., (2016) “Review of Shortest Path Algorithm”, IRJET, vol 3, issue 8.

[15] Yao, B., Yin, J., Zhou, H., & Wu, W., (2016) "Path Optimization Algorithms Based on Graph

Theory," International Journal of Grid and Distributed Computing, vol. 9, pp. 137-148.

[16] Cormen, T., Leiserson, C., Rivest, R., & Stein, C., (2009) Introduction to Algorithms, 3rd. ed., MIT

Press, London.

[17] Levitin, A., (2012) Introduction to the Design and Analysis of Algorithms, 3rd ed., Pearson

Education, Inc., Addison-Wesley.

[18] Jain, A., Datta, U., & Joshi, N., (2016) "Implemented modification in Dijkstra‟ s Algorithm to find

the shortest path for N nodes with constraint," International Journal of Scientific Engineering and
Applied Science, vol. 2, pp. 420-426.

[19] Xie, D., Zhu, H., Yan, L., Yuan, S., & Zhang, J., "An improved Dijkstra algorithm in GIS

application," in World Automation Congress (WAC), 2012, pp. 167-169.

[20] Lu, J., & Dong, C., "Research of shortest path algorithm based on the data structure," in the 3rd

International Conference of Software Engineering and Service Science (ICSESS), 2012 IEEE, 2012,
pp. 108-110.

[21] Kong, D., Liang, Y., Ma, X., & Zhang, L., "Improvement and Realization of Dijkstra Algorithm in

GIS of Depot," in the International Conference on Control, Automation and Systems Engineering
(CASE), 2011, 2011, pp. 1-4.

[22] Deng, Y., Chen, Y., Zhang, Y., & Mahadevan, S., (2012) "Fuzzy Dijkstra algorithm for shortest path

problem under uncertain environment," Applied Soft Computing, vol. 12, pp. 1231-1237.

44 Computer Science & Information Technology (CS & IT)

AUTHORS

Mabroukah Amarif: received her BSc degree in Computer Science from University of
Sebha, Libya, MSc in Computer Science from Universiti Sains Malaysia, and PhD in
Software Engineering from Universiti Kebangsaan Malaysia. Her interests span a wide
range of topics in the area of Software Engineering, Networking, Computer Security,
Visual Informatic, Computer Education and programming languages. She is currently
working as Assistant Professor at the departement of computer science, Faculty of
Information Technology in Sebha University of Libya.

Ibtusam Alashoury: received her BSc degree in Computer Science from University of
Sebha, Libya. She is currently doing her MSc in computer Sciences at Sebha University
of Libya. She interests in the area of Software Engineering, System Analysis and Web
design. she is currently working as a technical Engineer in the information development
project of Sebha University of Libya.

