
Natarajan Meghanathan et al. (Eds) : CCSEA, CLOUD, SIPRO, AIFU, SEA, DKMP, NCOM - 2019
pp. 303-314, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.90926

AN INNOVATIVE APPROACH TO USER

INTERFACE ENGINEERING

Pradip Peter Dey1, Bhaskar Raj Sinha2, Mohammad Amin3and Hassan

Badkoobehi4

School of Engineering and Computing, National University, San Diego,
CA, USA

ABSTRACT

If a computational system is to be successful, it must have an impressive user interface endowed

with appealing usability features for providing exceptional user experience. User interface

engineering requires an innovative approach because it is one of the most challenging areas

given the diversity of knowledge, ideas, skills and creativity needed for building smart interfaces

in order to succeed in today’s rapidly paced and tough, competitive marketplace.Modern

engineering aspects including analytical, intuitive, user experience, artistic, technical,

graphical, mathematical, psychological and programming models need to be considered in the

development process of a user interface. This paper critically examines some of the past

practices and recommends a set of principles for designing alluring user interfaces.It also

demonstrates how UML use case diagrams can be improved by naturally relating use cases to

user interface elements. The improved design constructs of an enhanced UML view are

presented with examples for highlighting and clarifying important user interface engineering

issues.

KEYWORDS

Design principles, interface modelling, Unified Modeling Language (UML), usability.

1. INTRODUCTION

User interface design is one of the most challenging areas of software engineering. The
challenges of building innovative user interfaces is often considered to be “beyond the reach” of
ordinary software developers, particularly, when compared to the repeated achievements of an
extraordinary genius such as Steve Jobs of Apple, Inc. Creating great design is not easy [1]. Great
software designers have not written much about their innovative design approaches. This is one
of the difficulties in understanding and replicating great design techniques [1]. We are not likely
to learn much about software design from the design of physical systems such as buildings.
“Because software is so malleable, software design is a continuous process that spans the entire
lifecycle of a software system; this makes software design different from the design of physical
systems such as buildings, ships, or bridges” [2, page-2]. After an initial design is created,
software design continues to evolve through iterations, experiments with prototypes, or
incremental development. Software complexity is challenging since “it isn’t possible to visualize
the design for a large software system well enough to understand all of its implementations before
building anything” [2, page-2]. An initial software design may have to be revised after the initial
development phase when better insights about the complexity of the system becomes evident. The
initial user interfaces of the system may play very crucial constructive roles in the formative
process. This paper critically examines a number of the past practices and suggests a set of

304 Computer Science & Information Technology (CS & IT)

principles upon which future innovative user interface engineering can be guided. Every time a
human uses a digital product, machine or tool, the interaction takes place through a machine-to-
human boundary or interface. If the interface is correctly structured, then the user is likely to have
a satisfactory experience which invites the user back again and again. Designing elegant user
interfaces for complex computational systems presents daunting challenges [1-9]. The
employment of use case analysis in the software development process has been increasingly
utilized because use cases help in reducing complex systems to manageable aspects [8, 9].
Usability questions in design are drawing more attention than any others in recent years [1, 8].
Software design, including user interface design, is based on current best practices since
practicing engineers have developed useful strategies based on past experiences [1-14]. Support
for context-aware user interfaces is evolving to a level where it becomes feasible even in large
systems [14]. User interface quality is difficult to assess, and yet, an emergent discipline is
attempting to do so [1, 3, 8]. A good user interface is truly appreciated only when it is integrated
with smart total system architecture including hardware and software that renders a useful
service. User interfaces cannot be considered in isolation from the entire integrated system.
Software development has often been considered as one of the most challenging processes of
modern technology. Some approach it from a scientific perspective while others treat it in an
artistically creative manner. Over the decades, a multitude of approaches to software development
have been proposed. These approaches are often described with impressive metaphors. Donald
Knuth initially indicated that software writing is an art [15]. David Gries argued it to be a
scientific endeavor [16]. Watts Humphrey [17] viewed software development primarily as a
process. In recent years, practitioners have come to realize that software is engineered [3-4], [18-
23]. As a result of the adoption of engineering methods, software development techniques have
evolved and software product quality has steadily improved.

The significance and role of user interface engineering in product design has recently been the
focus in many of the highly successful interactive systems [1]. Certain aspects of user interfaces
including graphical aspects could not be adequately developed before object oriented
programming. Indeed, it has become easier to design and implement a Graphical User Interface
(GUI) with object oriented concepts and languages. The Unified Modeling Language (UML) has
made significant contributions in representing software design including certain aspects of
usability [9]. The UML includes modeling of use case aspects in various views including the use
case view [9]. However, the UML does not include modeling and representation of GUI. This
paper critically examines important development issues and the UML use case view and proposes
an augmented use case view which is more appropriate for modern user interface modelling. It
suggests that certain interface elements should be properly included in use case diagrams. It
proposes some elements of modeling GUI in an intuitive language similar to UML. In addition, it
presents a set of principles for developing innovative user interface features following the
suggestions in recent studies [1, 2].

2. DESIGN PROCESS

Although various process models can be found in literature, important modern processes for
creatively developing interface-based software are iterative, evolutionary, prototype-based, and
agile [2-4], [7], [18-23]. Practitioners have come to realize that a complex system with smart GUI
elements cannot be built in one pass. In an iterative process, after requirements analysis, an initial
software design is constructed which is then reviewed. Next, the design review may lead to
newrequirements analysis which may be revised again on the basis of a combination of software
design reviews, new or changed requirements, or other factors which in turn lead to the next
software design. That is, the spiral process model [23], or an agile process [2] is found to be a
more productive software development process than the traditional processes. Certain aspects of
software are such that after an initial analysis and assessment, iterative enhancements lead to

Computer Science & Information Technology (CS & IT) 305

significant progress in the development process. One of the major benefits of the iterative process
is the improvements made in the design of user interfaces through successive iterations [25]. The
current study is based on the iterative scheme shown in Figure 1, where software design and
modeling is followed by design review and evaluation. Figure 1 shows an iterative process of
design and review in the central core with solid bold arrows which allows developers to start with
a highly abstract conceptual design after an initial requirements analysis. The details can be
gradually added in successive iterations. If needed, prototypes can be built and reviewed by
stakeholders in order to enhance the design. The dotted arrows show other viable alternatives
including iterations over the entire development process. User interface development requires
adjustments and refinements that are best done in iterations [2-3], [18-20], [23-24]. Often defects
are found during the review or evaluation process and these defects need to be corrected. The
design may start with just a few elements with some possible defects; other elements may be
incrementally added, and new defects identified may be corrected successively, as practiced in
agile processes [2]. The design review may be performed by the designer or by external
reviewers, formally or informally.

Figure 1: Iterative Design and Review

3. USE CASE VIEW

“Separation of concerns” is a fundamental premise of Software Engineering proposed by
Dijkstra[32] and arguably leads to multiple views of a software product. Separation of concerns is
usefulto software engineers as long as interactions among system elements are controlled. The
authors posit that the segmentation of the whole system into multiple views motivated by
separation of concerns should provide an undistorted total picture of the integrated system when
the views are put together. However, care must be exercised because multiple views may over
simplify the system without accounting for interactions of the system elements. The rules of
composition need to be spelled out consistently because the whole picture needs to become clear
when the multiple views are composed together in the operational software system. According to
UML2.0, there are nine views for describing different aspects of software [9]. The views are: use
case view, interaction view, state machine view, static view, design view, activity view,

306 Computer Science & Information Technology (CS & IT)

deployment view, model management view, and profile. A view is generally defined to be a
subset of the UML modeling constructs representing certain aspects of the software [9].Each view
is thoroughly explained in [9] with one or more diagrams that visually illustrate the main features
of the view. The UML use case view is presented with a use case diagram for capturing use case
features. The use case view is well-utilized due to the role use cases play in defining requirements
analysis and management [8]. It is not appropriately used for user interface design in UML[9]
although use cases have a lot to contribute to user interfaces. Use cases can clarify many
important software issues early in the development process if they are adequately treated in the
engineering process [3, 8, 9]. However, a very narrow definition of use case view is attempted in
UML that basically ignores the nature and significance of use cases. “The use case view models
the functionality of a subject (such as a system) as perceived by outside agents, called actors, that
interact with the subject from a particular view point” [9, page-34]. The perception of the outside
agents and interactions mentioned above should be mediated through an interface such as a GUI,
especially when the agents are humans. However, UML use case view fails to deal with user
interfaces or interfaces between the actors and the use cases. In fact, there is no UML view that
adequately deals with GUI features. The diagram that characterizes the use case view is the use
case diagram which presents the major use cases in a box with the actors outside the box to
indicate that the actors are external users of the current software. One of the central problems
with the UML use case diagram is that it totally ignores interfaces with the actors although each
actor is shown to be using one or more use cases utilizing a line or association. Interactions
among the actors cannot be shown in the same use case diagram. Each use case represent a
service which can be illustrated in a UML sequence diagram [9,33]. For illustration purpose,
consider a sample use case diagram shown in Figure 2.

The following initial requirements description characterizes the start of a small software project:
Develop a software system for computing areas of three types of play-place units: Rectangular,
Circular and Triangular. A contractor in Los Angeles builds play-places (with materials such as
wood, iron, pads, plastics etc.) at customer site using play place units of different dimensions. The
charges are in dollars based on the area of each unit in square feet, plus the number of units. The
software system is needed for computing the cost which is based on area. The cost is: $5.00 per
square foot. Assume that users always use feet for entering the dimensions of the units. A
Graphical User Interface (GUI) is required for user interactions. Additional typical assumptions
can be made about this project.

Most software projects start with some fuzzy requirements. Software engineers start their work
with an initial requirements analysis. After performing the initial requirements analysis, software
engineers may determine that the system must be web-based and should be available 24/7. The
access to the system is not required to be restricted with login ID. The system should be easy to
maintain using web-based tools. The functional and nonfunctional requirements would be
properly analyzed by the engineers. Finally, a software requirements specification (SRS)
document would be prepared; it is generally use case driven [8]. The use case diagram for the
play-place problem is given in Figure 2 in the standard UML notations [9].

Computer Science & Information Technology (CS & IT) 307

Figure 2: Use Case diagram in UML 2.0

The UML use case diagrams properly show use cases with ovals within the system boundary,
represented by a rectangle. One of the issues with a UML use case diagram, such as the one
shown in Figure 2, is that it ignores the interfaces between the actors and the use cases although it
depicts the actors as stick figures outside the current system boundary. For example, Rumbaugh,
Jacobson and Booch [9: page 34] present a use case diagram for a subject called “box office”
with four actors without any interfaces. In order to model functionality of the system as perceived
by the actors, interfaces appropriate for the given actors need to be depicted in a use case
diagram. This research proposes that appropriate interfaces are included in augmented use case
diagrams. Thus, the use case diagram given in Figure 3 is recommended for the sample software
project mentioned above. It is important to note that the interfaces are shown with dotted
rounded rectangles in Figure 3.These interfaces are referred to as the general interfaces in order to
distinguish them from specialized interfaces such as provided interfaces and required interfaces
mentioned in UML [9, 33].In order to refer to the general interfaces, they are sequentially
numbered. If a general interface is to be developed as a part of the current software system, then it
is shown within the system boundary; otherwise, it is shown outside the system boundary. As
there are many different types of interfaces, some of them need to be marked for their importance.
If an interface is a graphical user interface (GUI), then it is marked with the term <<GUI>>
utilizing UML stereotypes [9].In addition, when one general interface includes another, it may be
marked appropriately. If there is a third general interface that includes the first, then “3 1 כ” can
be shown in the third interface.

308 Computer Science & Information Technology (CS & IT)

Figure 3. Augmented Use case diagram with general interfaces

Having general interfaces in the use case diagram intuitively and logically supports the idea that
user’s perception about the functionality is modeled appropriately in the augmented use case
view. When the actor is a human user, the general interface may be a GUI for appropriate
interactions between the user and the system. For interactive systems, addition of GUIs to a use
case diagram helps in understanding the perceived functionality of the system. It is the role of
GUIs that is not adequately detailed in the UML modeling techniques leading to a high degree of
confusion for the development of modern interactive systems.

In addition to use case diagrams, the augmented use case view should have general interface
diagrams. Without such a diagram concerns about user interfaces are grossly ignored and
interactions among system elements are not appropriately accounted for. Without interface
diagrams, the standard UML [9] misses information vital to the success of a modern software
system. It also misses to give a comprehensive account of the software which is expected to be a
composition of the standard UML views. It is reasonable to be flexible about the notations of the
general interface diagrams, especially if they are GUIs. Two main alternative notations for the
general interface diagram are (1) screen shots from a prototype, and (2) abstract graphical
representation of major interface elements. We show the former notation in the general interface
diagram given in Figure 4 for the general interface 1 of Figure 3. That is, we developed a
prototype GUI applet using the Java programming language for the sample problem of play-place
units mentioned above in section 3 and took a screen shot of the GUI for Figure 4. It is to be
assumed that through each subsequent iteration the GUI applet of Figure 4 will evolve and
acquire better qualities.

Computer Science & Information Technology (CS & IT) 309

Figure 4: General interface diagram

The general interface diagrams such as the one shown in Figure 4 should be considered important
for software design purposes. Jason Hong [1] asks an important question: “how do we effectively
incorporate great design into products?” Currently, we cannot incorporate GUI design into
standard UML based techniques. The role of the UML in modeling can be enhanced by
appropriately accounting for the perceived functionality of a system by providing the augmented
use case view along with general interface diagrams. This is true because the augmented use case
view includes general interfaces in its use case diagram between the actors and the use cases. The
perceived functionality is evident perceived by the actors as it passes through the general
interfaces.

The balance between abstraction and details can be appropriately achieved in the general
interface diagram as the interface elements can be added incrementally. “Software engineers and
programmers are often competent users of the technology . . . All too often, however, they do not
use this technology in an appropriate way and create user interfaces that are inelegant,
inappropriate and hard to use” [4]. The augmented use case view puts extra emphasis on
modeling user interfaces. This promotes focusing on many other aspects of user interfaces such as
maintaining input mechanisms the same throughout the application. Nobody should argue that
interfaces are adequately treated in the UML design view and that augmentation of the use case
view is not required, because the design view simply places the provided and required interfaces
with their appropriate components. Extra emphasis is needed for showing the details of interfaces
of certain types such as GUIs. Modeling GUIs for interactive systems has become increasingly
important in the past two decades [1, 2, 7, 26]. Separation of concerns [27] motivates modular

310 Computer Science & Information Technology (CS & IT)

design where a software system is decomposed into components; however, well-defined
interfaces need to be specified among the components. GUIs may be required for human
interactions with the components. The main confusion with the UML is that its presentation of
software aspects totally disregards GUIs. A visual modeling language such as the UML cannot
achieve its major goals without appropriate attention to GUI design. In addition, software
engineering education with the UML requires guidance for learners so that different views
together would be able to define the complete software system compositionally. Due to missing
elements such as GUIs, the UML provides a fragmentary view of the software which is
inadequate for any account of the integrated whole system. The proposed augmented use case
view is designed to fill the gap. Reasoning with the augmented use case view is better than with
traditional use case view, because the functionality of the system, as perceived by the actors, is
more reasonable by including the general interfaces mentioned above. Engineering practices and
design activities with the general interface constructs may also encourage and promote learning
about user interfaces which is valuable for students in educational settings and academic
environments.

4. UI DESIGN PRINCIPLES

In this section, we propose a set of design principles for developing user interfaces. Jason Hong
[26] observes that “Apple tends to design by principle rather than from data.” Human Computer
Interaction (HCI) data along with use case scenarios may help in understanding some aspects of
user interfaces. However, these may not help much if the goal of the design is to present an
innovative solution to exceed all expectations. HCI data are useful for accomplishing the more
modest goal of “meeting expectations”. Advanced design principles along with effective
strategies may lead to innovative user interface design. The following user interface design
principles include the principles discussed by Hong [26] in the context of Apple, plus others that
we found to be valuable for innovative solutions.

1. Examine promising alternatives from the widest range of possible alternatives in order to
provide the best user experience through integration of various features including
hardware, software, artistic, mathematical and intuitive aspects.

2. Let subject matter experts play a leading role in all phases of the design.

3. Utilize Object Oriented Design concepts throughout the development process.

4. Push the design-review-design cycle to its limits.

5. Consider separation of concerns in order to deal with all interactions among system
elements.

6. Consider design principles as well as HCI data and user experience for innovative user
interface solutions.

7. Include only those action features which are intuitively learnable; transform others to this
category or to an automated category.

8. Maximize cohesion and minimize coupling among components.

9. Include error prevention and simple error handling.

10. Present user interface design at multiple levels of abstraction

For innovative user interface solutions, designers need to consider unusual alternatives in addition
to the obvious ones. With reference to principle 1 suggested above, it is important to mention that
quick design under time pressure leads to consideration of only a few obvious alternatives

Computer Science & Information Technology (CS & IT) 311

missing innovative but unapparent alternatives. Apple came up with brilliant user interface
solutions that were missed by others in the same field.

Principle 2 is thoroughly discussed by Hong [26] with an example where contributions of subject
matter experts are explained with an example of an experienced photographer. Experienced
subject matter experts would be able to adequately explain what will, or will not, work in a given
context.

Principle 3 suggests that object oriented design concepts [2, 3, 34] need to be utilized throughout
the iterative development process. Object oriented design elements such as buttons, windows,
allow fast development cycles.

Principle 4 suggests that improvements can be achieved by repeating the design-review-design
cycle for a complex system. We have suggested an iterative design-review-design cycle as shown
in Figure 1. Through an iterative process a designer may exhaustively explore many alternatives
by critically examining her own designs.

Principle 5 is based on a traditional strategy for dealing with complexity [2-4]. The complexity of
a system becomes increasingly difficult if the degree of interactions among its elements become
unpredictable. As the concerns are separated, their relations become properly understood and,
consequently, their interactions become predictable.

Principle 6 is based on a commonsense integration of HCI factors [27-29], user experience, and
other advanced design principles [26]. A good study of user groups helps in the understanding of
user interface aspects which may stimulate innovative user interface constructs [27], [28], [30].
Principle 7 basically suggests that users should not be burdened by difficult learning tasks. If
there are tasks that are not easy to learn, the designer should try to automate them as much as
possible.

Principle 8 is discussed in most textbooks [1, 2]; it is related to Principle 4 because loosely
coupled systems have advantages over tightly coupled systems. Interactions among components
of a tightly coupled system are often unmanageable.

The idea of Principle 9 is based on Ben Shneiderman’s suggestion [27] that when users are prone
to make errors, an automated or easy recovery process should be used to prevent the error from
occurring.

Principle 10 makes sure that design is expressible in multiple levels of abstraction without
significant loss of clarity. When one level of abstraction is transformed into another level,
consistent interpretations should be applicable. Presenting user interfaces in multiple levels makes
sure that no inconsistencies exist. In addition, the gap between high level design and low level
design should be eliminated in the final phase. It is to be noted that the proposed design principles
do not contradict with the various versions of the UML [9], [32] or the enhancements suggested
above. The proposed design principles combined with augmented use case view have great
potentials for smart user interface design.

5. CONCLUSION

As user interfaces become increasingly important, a set of principles that direct selective iterative
design techniques are considered helpful in developing an innovative approach towards user
interface engineering. The set of principles proposed in this paper may provide sufficient clarity
about the nature of innovations that are achievable through user interface engineering activities.It

312 Computer Science & Information Technology (CS & IT)

is reasonable to expect that various aspects of user interface modeling and design might be,
procedurally, systematically reviewed and revised in an iterative evolutionary process that spans
the entire lifecycle of a software system. In addition, the UML use case view is reviewed and
suggestions are made for augmenting the use case view. Research of user experience (UX) is a
critical component of use case development [31]. The enhancements suggested in this paper are
most applicable in dealing with GUI aspects that are missing in the standard UML [9].Without
GUI related constructs, the UML appears to be deficient and, therefore, the addition of general
interface diagrams is suggested. This addition significantly enhances software modeling in UML.
Design techniques suggested here have the potential to help in the development of smart user
interfaces.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the help and/or encouragements received from John Cicero,
James Jaurez, Arun Datta, Gordon Romney and many others during the preparation of this paper
and the research reported in it.

REFERENCES

[1] Hong, J. (2010) “Why is Great Design so Hard?” Communications of the ACM, July 2010.

[2] Ousterhout, J. (2018) A Philosophy of Software Design, Yaknyam Press.

[3] Pressman, R. & Maxim, B. (2015) Software Engineering: A Practitioner's Approach, 8th edition,

McGraw-Hill.

[4] Sommerville, I. (2010) Software Engineering, 9th Edition, Addison Wesley.

[5] Wang, Y. (2008) Software Engineering Foundations: A Software SciencePerspective,Auerbach

Publications.

[6] Shaw, M. & Garlan, D. (1995) “Formulations and Formalisms in Software Architectures”, Computer

Science Today: Recent Trends and Developments, Springer-Verlag LNCS, 1000, 307-323, 1995.

[7] Braude, E. & Bernstein, M. (2011) Software Engineering: Modern Approaches, (2nd Edition), John

Wiley & Sons.

[8] Leffingwell, D. & Widrig, D. (2003) Managing Software Requirements: A Use Case Approach,

Addison Wesley.

[9] Rumbaugh, R. Jacobson, I. & Booch, G. (2005) The Unified Modeling Language Reference Manual.

(2nd Edition), Addison Wesley.

[10] Baniassad, E., Clements, P., Araujo, J., Moreira, A., Rashid, A. & Tekinerdogan, B. (2006)

“Discovering Early Aspects,” IEEE Software, 2006.

[11] Krechetov, I., Tekinerdogan, B. & Garcia, A. (2006) “Towards an integrated aspect-oriented

modeling approach for software architecture design,” 8th Aspect-Oriented Modeling Workshop,
Aspect-Oriented Software Development (AOSD) 2006.

[12] Navasa, A. Pérez, M. A., Murillo, J. M. & Hernández, J. (2002) “Aspect Oriented Software

Architecture: A Structural Perspective,” Proceedings of the Aspect-Oriented Software Development
(AOSD), 2002.

Computer Science & Information Technology (CS & IT) 313

[13] Azevedo, J. L., Cunha, B. & Almeida, L. (2007) “Hierarchical Distributed Architectures for
Autonomous Mobile Robots: A case study”, Proceedings of the IEEE Conference on Emerging
Technologies and Factory Automation, 2007.

[14] Cerny, T., Cemus, K., Donahoo, M. & Song, E. (2013) “Aspect-driven, Data-reflective and Context-

aware User Interfaces Design”, ACM SIGAPP Applied Computing Review, volume 13(4), page 53-
65, 2013.

[15] Knuth, D. E. (1969) Seminumerical Algorithms: The Art of Computer Programming 2. Addison-

Wesley, Reading, Mass.

[16] Gries, D. (1981) The Science of Programming. Springer, 1981.

[17] Humphrey, W. (1989) Managing the Software Process, Reading, MA. Addison-Wesley.

[18] Pfleeger, S. & Atlee, J. (2010) Software Engineering, Prentice-Hall.

[19] Agarwal, B., Tayal, S. & Gupta, M. (2010) Software Engineering and Testing, Jones and Bartlet.

[20] Tsui, F. & Karam, O. (2011) Essentials of Software Engineering, 2nd Ed., Jones and Bartlet.

[21] Bass, L. Clements, P. & Kazman, R. (2003) Software Architecture in Practice, 2nd Edition, Addison-

Wesley.

[22] Miller, J. & Mujerki, J. Editors, (2003) MDA Guide, Version 1, OMG Technical Report. Document

OMG/200-05-01, http://www.omg.org/mda

[23] Boehm, B. (1986) “A Spiral Model of Software Development and enhancement,” ACM SIGSOFT

Software Engineering Notes, ACM, 11(4):14-24, 1986.

[24] Dey, P. P, Sinha, B. R., Amin, M. & Badkoobehi, H. (2012) "Augmenting Use Case View for

Modeling", World Academy of Science, Engineering and Technology, Vol.6 (12), pages 1318-21.

[25] Nielsen, J. (1993) “Iterative User Interface Design,” IEEE Computer vol.26 no.11 pp 32-41, 1993.

[26] Hong, J. (2010) “Why is Great Design so Hard (Part Two)?” Communications of the ACM, August

2010.

[27] Hursch, W. L. & Lopes, C. (1995) “Separation of Concerns”, Technical Report, Northeastern

University.1995, Retrieved, July11, 2014
fromftp://ftp.ccs.neu.edu/pub/people/lieber/crista/techrep95/separation.pdf

[28] Shneiderman, B., Plaisant, C., Cohen, M. & Jacobs, S. (2009) Designing the User Interface: Strategies

for Effective Human-Computer Interaction (5th Edition), Prentice Hall.

[29] Tidwell, J. (2011) Designing Interfaces, O’Reilly, 2nd Edition.

[30] Nielsen, N. Gr. (2019) Why User Interviews fail? Retrieved June 14, 2019 from www.nngroup.com

[31] Loranger, H. (2014) UX Without User Research is not UX, retrieved April 14, 2015 from

http://www.nngroup.com/articles/ux-without-user-research/

[32] Dijkstra, E. W. (1974) “On the role of scientific thought “, Retrieved August 15, 2015, from

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html See also Effective
Software Design, IASA Israel Meeting, retrieved April 12, 2019 from
http://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

314 Computer Science & Information Technology (CS & IT)

[33] Agile Modelling, (2019) Introduction to the Diagrams of UML 2.X, retrieved April 14, 2019
fromhttp://www.agilemodeling.com/essays/umlDiagrams.htm

[34] Ambler, S. (2004) The Object Primer: Agile Model-Driven Development with UML 2, 3rd

Edition.Cambridge University Press

AUTHORS

1
Dr. Pradip Peter Dey is a Professor at National University, 3678 Aero Court Dr., San Diego, CA, 92123,

USA. He primarily teaches in the MS in Computer Science program, School of Engineering and
Computing. His research interests are computational models, software design, mathematical reasoning,
visualizations, User Interfaces and Computer Science education. Phone: 858-309-3421; email:
pdey@nu.edu.

2
Dr. Bhaskar Raj Sinha is a Professor at National University, 3678 Aero Court Dr., San Diego, CA,

92123, USA. Dr. Sinha has more than 25 years of research and teaching experience in industry and
academia. His interests are in Mathematical Reasoning, Digital Systems, Computer Architecture,
Technology Management, and Engineering Education. Phone: 858-309-3431; email: bsinha@nu.edu.

3
Dr. Mohammad Amin is with National University, 3678 Aero Court Dr., San Diego, CA, 92123, USA.

He is a Professor and Academic Program Director for the Master’s degree program for the MS in Electrical
Engineering program, School of Engineering and Computing. His major research interests are
computational modelling, wireless communications, databases, sensors and engineering education. Phone:
858-309-3422; email: mamin@nu.edu.

4
Dr. Hassan Badkoobehi is with National University as a Professor in the School of Engineering and

Computing at 3678 Aero Court Dr., San Diego, CA, 92123, USA. His major research interests are
engineering education, environmental engineering, mathematics and statistical reasoning. Phone: 858-309-
3437; email: hbadkoob@nu.edu.

