Authors
Akash Jadhav, Noque.store, India
Abstract
In recent years, retail stores have seen traction in bringing online shopping experience to offline stores via autonomous checkouts. Autonomous checkouts is a computer vision-based technology that needs to understand three human elements within the store: who, where, and doing what. This paper addresses two of the three elements: who and where. It presents an approach to track and localize humans in a multi-view camera system. Traditional methods have limitations as they: (1) fail to overcome substantial occlusion of humans; (2) suffer a lengthy processing time; (3) require a planar homography constraint between camera frames; (4) suffer swapping of labels assigned to a human. The proposed method in this paper handles all the aforementioned limitations. The key idea is to use a hierarchical association model for tracking, which uses each human's clothing features, human pose orientation, and relative depth of joints, and runs at over 23fps.
Keywords
Multi-view, Data Association, Tracking, Localization.